(2000•江西)如圖,等腰梯形ABCD中,AD∥BC,∠B=60°,則∠D=    度.
【答案】分析:根據(jù)等腰梯形的性質(zhì)可得到∠A的度數(shù),再根據(jù)等腰梯形同一底上的兩個(gè)角相等即可求解.
解答:解:∵AD∥BC,∠B=60°
∴∠A=120°
∵ABCD為等腰梯形
∴∠A=∠D=120°
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等腰梯形的性質(zhì)的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:解答題

(2000•江西)如圖,已知C、D是雙曲線,y=在第一象限內(nèi)的分支上的兩點(diǎn),直線CD分別交x軸、y軸于A、B兩點(diǎn),設(shè)C、D的坐標(biāo)分別是(x1,y1)、(x2,y2),連接OC、OD.
(1)求證:y1<OC<y1+;
(2)若∠BOC=∠AOD=a,tana=,OC=,求直線CD的解析式;
(3)在(2)的條件下,雙曲線上是否存在一點(diǎn)P,使得S△POC=S△POD?若存在,請(qǐng)給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年江西省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•江西)如圖,已知C、D是雙曲線,y=在第一象限內(nèi)的分支上的兩點(diǎn),直線CD分別交x軸、y軸于A、B兩點(diǎn),設(shè)C、D的坐標(biāo)分別是(x1,y1)、(x2,y2),連接OC、OD.
(1)求證:y1<OC<y1+;
(2)若∠BOC=∠AOD=a,tana=,OC=,求直線CD的解析式;
(3)在(2)的條件下,雙曲線上是否存在一點(diǎn)P,使得S△POC=S△POD?若存在,請(qǐng)給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2000•江西)如圖所示,在△ABC中,DE∥BC,AD:DB=1:2,則下列結(jié)論中,正確的是( )

A.=
B.=
C.=
D.=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年江西省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2000•江西)如圖所示,在△ABC中,DE∥BC,AD:DB=1:2,則下列結(jié)論中,正確的是( )

A.=
B.=
C.=
D.=

查看答案和解析>>

同步練習(xí)冊(cè)答案