如圖所示,點(diǎn)B坐標(biāo)為(18,0),點(diǎn)A坐標(biāo)為(18,6),動(dòng)點(diǎn)P從點(diǎn)O開(kāi)始沿OB以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿BA以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng).如果P、Q分別從O、B同時(shí)出發(fā),用t(秒)表示移動(dòng)的時(shí)間(0<t≤6),那么,
(1)當(dāng)t=______時(shí),以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△AOB相似;
(2)若設(shè)四邊形OPQA的面積為y,試寫(xiě)出y與t的函數(shù)關(guān)系式,并求出t取何值時(shí),四邊形OPQA的面積最小?
(3)在y軸上是否存在點(diǎn)E,使點(diǎn)P、Q在移動(dòng)過(guò)程中,以B、Q、E、P為頂點(diǎn)的四邊形的面積是一個(gè)常數(shù),請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)討論:當(dāng)∠BPQ=∠BOA,即PQ∥OA,由相似三角形:Rt△QPB∽R(shí)t△AOB,的對(duì)應(yīng)邊成比例求得t=3;當(dāng)∠BPQ=∠A,則Rt△BPQ∽R(shí)t△BAO,由相似三角形的對(duì)應(yīng)邊成比例知=,即=,即可得到t=5.4;
(2)利用y=S△OAB-S△BPQ=×18×6-×(18-3t)t,然后利用配方法求得該二次函數(shù)的最值,即求出t取何值時(shí),四邊形OPQA的面積最;
(3)當(dāng)點(diǎn)E在y軸正半軸時(shí),利用以B、Q、E、P為頂點(diǎn)的四邊形的面積=梯形BQEO的面積-△OPE的面積,用t與m表示出來(lái)為(t+m)×18-×3t×m=(9-m)t+9m,當(dāng)t的系數(shù)為0時(shí)即可得到m的值;
當(dāng)點(diǎn)E在y軸負(fù)半軸時(shí),S=S△EPB+S△PBQ=(18-3t)(-m)-(18-3t)t=-t2+mt+9t-9m.此時(shí)不存在m的值,使S的值為常數(shù).
解答:解:∵點(diǎn)B坐標(biāo)為(18,0),點(diǎn)A坐標(biāo)為(18,6),
∴BO=18,AB=6,AB⊥0B.
(1)當(dāng)∠BPQ=∠BOA,即PQ∥OA,Rt△QPB∽R(shí)t△AOB,
=,即=,
解得t=3;
當(dāng)∠BPQ=∠A,則Rt△BPQ∽R(shí)t△BAO,
=,即=,
∴t=5.4.
所以當(dāng)t=3秒或5.4秒時(shí),以點(diǎn)P、Q、B為頂點(diǎn)的三角形與△AOB相似.

(2)y=S△OAB-S△BPQ=×18×6-×(18-3t)t=(t-3)2+,即y=(t-3)2+
則當(dāng)t=3,四邊形OPQA的面積最小;

(3)存在.理由如下:
設(shè)以B、Q、E、P為頂點(diǎn)的四邊形面積是S,E(0,m).
①如圖1,當(dāng)E在y軸的正半軸上時(shí),則
S=S梯形BQEO-S△OPE=(t+m)×18-×3t×m=(9-m)t+9m.
故當(dāng)9-m=0,即m=6時(shí),S=54是一個(gè)定值;
②如圖2,當(dāng)點(diǎn)E在y軸的正半軸上時(shí),則S=S△EPB+S△PBQ=(18-3t)(-m)-(18-3t)t=-t2+mt+9t-9m.
此時(shí)不存在m的值,使S的值為常數(shù).
綜上所述,點(diǎn)E的坐標(biāo)(0,6)使點(diǎn)P、Q在移動(dòng)過(guò)程中,以B、Q、E、P為頂點(diǎn)的四邊形的面積是一個(gè)常數(shù).
故答案為:3或5.4.
點(diǎn)評(píng):本題考查了三角形相似的判定與性質(zhì):兩組對(duì)應(yīng)角相等的三角形相似;相似三角形的對(duì)應(yīng)邊的比相等.也考查了分類(lèi)討論思想的運(yùn)用以及三角形的面積公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖所示,點(diǎn)A坐標(biāo)為(0,3),OA半徑為1,點(diǎn)B在x軸上.
(1)若點(diǎn)B坐標(biāo)為(4,0),⊙B半徑為3,試判斷⊙A與⊙B位置關(guān)系;
(2)若⊙B過(guò)M(-2,0)且與⊙A相切,求B點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,點(diǎn)B坐標(biāo)為(6,0),點(diǎn)A坐標(biāo)為(6,12),動(dòng)點(diǎn)P從點(diǎn)O開(kāi)始沿OB以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿BA以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng).如果P、Q分別從O、B同時(shí)出發(fā),用t(秒)表示移動(dòng)的時(shí)間精英家教網(wǎng)(0<t≤6),那么,
(1)當(dāng)t為何值時(shí),四邊形OPQA是梯形,此時(shí)梯形OPQA的面積是多少?
(2)當(dāng)t為何值時(shí),以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△AOB相似?
(3)若設(shè)四邊形OPQA的面積為y,試寫(xiě)出y與t的函數(shù)關(guān)系式,并求出t取何值時(shí),四邊形OPQA的面積最。
(4)在y軸上是否存在點(diǎn)E,使點(diǎn)P、Q在移動(dòng)過(guò)程中,以B、Q、E、P為頂點(diǎn)的四邊形的面積是一個(gè)常數(shù)?若存在請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•吳江市模擬)如圖所示,點(diǎn)B坐標(biāo)為(18,0),點(diǎn)A坐標(biāo)為(18,6),動(dòng)點(diǎn)P從點(diǎn)O開(kāi)始沿OB以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)B移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿BA以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng).如果P、Q分別從O、B同時(shí)出發(fā),用t(秒)表示移動(dòng)的時(shí)間(0<t≤6),那么,
(1)當(dāng)t=
3或5.4
3或5.4
時(shí),以點(diǎn)P、B、Q為頂點(diǎn)的三角形與△AOB相似;
(2)若設(shè)四邊形OPQA的面積為y,試寫(xiě)出y與t的函數(shù)關(guān)系式,并求出t取何值時(shí),四邊形OPQA的面積最?
(3)在y軸上是否存在點(diǎn)E,使點(diǎn)P、Q在移動(dòng)過(guò)程中,以B、Q、E、P為頂點(diǎn)的四邊形的面積是一個(gè)常數(shù),請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(10分)

如圖所示,點(diǎn)A坐標(biāo)為(0,3),OA半徑為1,點(diǎn)B在x軸上.

⑴若點(diǎn)B坐標(biāo)為(4,0),⊙B半徑為3,試判斷⊙A與⊙B位置關(guān)系;

⑵若⊙B過(guò)M(-2,0)且與⊙A相切,求B點(diǎn)坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省泰興市初三上學(xué)期階段測(cè)試數(shù)學(xué)卷 題型:解答題

(10分)

如圖所示,點(diǎn)A坐標(biāo)為(0,3),OA半徑為1,點(diǎn)B在x軸上.

⑴若點(diǎn)B坐標(biāo)為(4,0),⊙B半徑為3,試判斷⊙A與⊙B位置關(guān)系;

⑵若⊙B過(guò)M(-2,0)且與⊙A相切,求B點(diǎn)坐標(biāo).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案