如圖,在等腰梯形ABCD中,上底為6cm,下底為8cm,高為
3
cm,則腰長為
2
2
cm.
分析:首先過點A作AF∥CD,交BC于點F,作點A作AE⊥BC于點E,易得△ABF是等腰三角形,四邊形ADCF是平行四邊形,然后由三線合一的性質,求得BE的長,再利用勾股定理求得答案.
解答:解:過點A作AF∥CD,交BC于點F,作點A作AE⊥BC于點E,
∵AD∥BC,
∴四邊形ADCF是平行四邊形,
∴CF=AD=6cm,AF=CD,
∴BF=BC-CF=8-6=2(cm),
∵AB=CD,
∴AB=AF,
∴BE=
1
2
BF=1(cm),
∴AB=
AE2+BE2
=
12+(
3
)
2
=2(cm).
故答案為:2.
點評:此題考查了等腰梯形的性質、等腰三角形的性質、平行四邊形的判定與性質以及勾股定理.此題難度不大,注意掌握輔助線的作法,注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設P、Q同時出發(fā)并運動了t秒.
(1)當PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:中考必備’04全國中考試題集錦·數(shù)學 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側部分的面積為S.

  

(1)分別求出當點Q位于AB、BC上時,S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)當線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(2)的條件下,設線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當一直線l經過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習冊答案