(2004•淮安)已知:二次函數(shù)y=x2-mx-4.
(1)求證:該函數(shù)的圖象一定與x軸有兩個不同的交點;
(2)設該函數(shù)的圖象與x軸的交點坐標為(x1,0)、(x2,0),且,求m的值,并求出該函數(shù)圖象的頂點坐標.
【答案】分析:判斷二次函數(shù)y=x2-mx-4的圖象與x軸的交點情況,相當于求方程x2-mx-4=0的判別式符號,本題就是要證明△>0;
二次函數(shù)圖象與x軸的兩交點的橫坐標x1,x2也就是方程x2-mx-4=0的兩根,可運用根與系數(shù)關系解題.
解答:解:(1)因為△=m2+16>0,所以一元二次方程x2-mx-4=0有兩個不相等的實數(shù)根,
因而函數(shù)y=x2-mx-4的圖象一定與x軸有兩個不同的交點;

(2)因為該函數(shù)的圖象與x軸的兩個交點坐標分別為(x1,0)、(x2,O),
所以x1,x2是方程x2-mx-4=0的兩個實數(shù)根,
所以x1+x2=m,x1•x2=-4.

因此m=4.
所以二次函數(shù)的解析式為y=x2-4x-4=(x-2)2-8,因此頂點坐標為(2,-8).
點評:主要考查了二次函數(shù)的圖象性質(zhì)與一元二次方程根與系數(shù)之間的關系,以及求圖象的頂點坐標.這些性質(zhì)和根與系數(shù)關系的變形要求掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2004年江蘇省淮安市中考數(shù)學試卷(解析版) 題型:解答題

(2004•淮安)已知:二次函數(shù)y=x2-mx-4.
(1)求證:該函數(shù)的圖象一定與x軸有兩個不同的交點;
(2)設該函數(shù)的圖象與x軸的交點坐標為(x1,0)、(x2,0),且,求m的值,并求出該函數(shù)圖象的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年全國中考數(shù)學試題匯編《圖形的相似》(05)(解析版) 題型:解答題

(2004•淮安)已知:如圖,在△ABC中,∠BAC的平分線AD交△ABC的外接圓⊙O于點D,交BC于點G.
(1)連接CD,若AG=4,DG=2,求CD的長;
(2)過點D作EF∥BC,分別交AB、AC的延長線于點E、F.求證:EF與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省蘇州市常熟市中考數(shù)學模擬卷(解析版) 題型:解答題

(2004•淮安)已知:如圖,在△ABC中,∠BAC的平分線AD交△ABC的外接圓⊙O于點D,交BC于點G.
(1)連接CD,若AG=4,DG=2,求CD的長;
(2)過點D作EF∥BC,分別交AB、AC的延長線于點E、F.求證:EF與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源:2004年江蘇省淮安市中考數(shù)學試卷(解析版) 題型:解答題

(2004•淮安)已知:如圖,在△ABC中,∠BAC的平分線AD交△ABC的外接圓⊙O于點D,交BC于點G.
(1)連接CD,若AG=4,DG=2,求CD的長;
(2)過點D作EF∥BC,分別交AB、AC的延長線于點E、F.求證:EF與⊙O相切.

查看答案和解析>>

同步練習冊答案