閱讀材料,大數(shù)學家高斯在上學讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?我們可以先從簡單的幾個數(shù)開始,計算、觀察,尋求規(guī)律,得出一般性的結論.1=
1×2
2
=1
1+2=
2×3
2
=3,1+2+3=
3×4
2
=6,1+2+3+4=
4×5
2
=10
;…,
(1)計算:1+2+3+…+100=
5050
5050

(2)計算:41+42+43+…+100=
5050
5050
-
820
820
=
4230
4230
分析:(1)通過觀察發(fā)現(xiàn)有1+2+3…+n=
1
2
n(n+1)
一般性規(guī)律,將n=100代入即可求得結果;
(2)將原式轉化為1+2+3+…+100-(1+2+3+…+40)即可得到結論.
解答:解:(1)1+2+3+…+100=
100×101
2
=5050;
(2)41+42+43+…+100=1+2+3+…+100-(1+2+3+…+40)=
100×101
2
-
40×41
2
=5050-820=4230
故答案為5050 5050 820 4230.
點評:本題考查了數(shù)字的變化類知識,解題的關鍵是仔細審題并發(fā)現(xiàn)有關數(shù)字的一般規(guī)律.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料,大數(shù)學家高斯在上學讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?經(jīng)過研究,這個問題的一般性結論是1+2+3+4+5+…+n=
1
2
n(n+1)
,其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:
觀察下面三個特殊的等式:
1×2+2×3+3×4+…+n(n+1)=
1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)
將這三個等式的兩邊分別相加,可以得到1×+2×3+3×4=
1
3
×3×4×5=20
讀完這段材料,請你思考后回答:
(1)1×2+2×3+3×4+…+100×101=
 

(2)1×2+2×3+3×4+…+n(n+1)=
 

(3)1×2×3+2×3×4+…+n(n+1)(n+2)=
 

(只需寫出結果,不必寫中間的過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料,大數(shù)學家高斯在上學讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?經(jīng)過研究,這個問題的一般性結論是1+2+3+…+n=
1
2
n(n+1)
,其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:1×2+2×3+…n(n+1)=?
觀察下面三個特殊的等式1×2=
1
3
(1×2×3-0×1×2)
,2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)

讀完這段材料,請你思考后回答:
(1)5×6=
 
=
 

將前面兩個等式的兩邊相加,可以得到
1×2+2×3=
1
3
×2×3×4=8
將這三個等式的兩邊相加,可以得到
1×2+2×3+3×4=
1
3
×3×4×5=20

讀完這段材料,請你思考后回答:
(2)1×2+2×3+…+100×101=
 
=
 

(3)1×2+2×3+…+n(n+1)=
 
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:大數(shù)學家高斯在上學讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?經(jīng)過研究,這個問題的一般性結論是1+2+3+…+n=
1
2
n(n+1),其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:1×2+2×3+…n(n+1)=?
觀察下面三個特殊的等式:
1×2=
1
3
(1×2×3-0×1×2),
2×3=
1
3
(2×3×4-1×2×3),
3×4=
1
3
(3×4×5-2×3×4),
將這三個等式的兩邊相加,可以得到:
1×2+2×3+3×4=
1
3
(1×2×3-0×1×2+2×3×4-1×2×3
+3×4×5-2×3×4)
=
1
3
×3×4×5
=20
讀完這段材料,請你思考后回答:
(1)1×2+2×3+…+7×8=
168
168

(2)1×2+2×3+…+n(n+1)=
1
3
n(n+1)(n+2)
1
3
n(n+1)(n+2)
;
(3)若1×2+2×3+…+n(n+1)=
1
3
×9×10×11
,求n邊形的內(nèi)角和度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省月考題 題型:探究題

閱讀材料,大數(shù)學家高斯在上學讀書時曾經(jīng)研究過這樣一個問題:…+100=經(jīng)過研究,這個問題的一般性結論是1+2+3+4+5+…+n'=,其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:觀察下面三個特殊的等式:
1×2+2×3+3×4+…+n(n+1)=
1×2=(1×2×3﹣0×1×2)
2×3=(2×3×4﹣1×2×3)
3×4=(3×4×5﹣2×3×4)
將這三個等式的兩邊分別相加,可以得到1×2×3+3×4=×3×4×5=20
讀完這段材料,請你思考后回答:
(1)1×2+2×3+3×4+…+100×101= _________
(2)1×2+2×3+3×4+…+n(n+1)= _________
(3)1×2×3+2×3×4+…+n(n+1)(n+2)= _________ .(只需寫出結果,不必寫中間的過程)

查看答案和解析>>

同步練習冊答案