【題目】如圖,將矩形ABCD沿DE折疊,點(diǎn)A恰好落在BC上的點(diǎn)F處,點(diǎn)G、H分別在AD、AB上,且FG⊥DH,若tan∠ADE=,則的值為( 。
A.B.C.D.
【答案】B
【解析】
利用翻折變換的性質(zhì)得出△EBF∽△FCD,進(jìn)而求出的值,再利用已知得出得△GNF∽△DAH,則.
∵將矩形ABCD沿DE折疊,點(diǎn)A恰好落在BC上的點(diǎn)F處,
∴AE=EF,∠EFD=90°,
∴∠EFB+∠DFC=90°,
∵∠DFC+∠CDF=90°,
∴∠CDF=∠EFB,
又∵∠B=∠C,
∴△EBF∽△FCD,
∴,
∵tan∠ADE=,
∴tan∠EDF==,
∴==,
∴設(shè)BE=a,BF=x,則FC=2a,DC=2x,
故EF+BE=DC,
則+a=2x,
整理得:a=x,
故==,
過(guò)點(diǎn)G作GN⊥BC于點(diǎn)N,
∴四邊形ABNG是矩形,
∴AB=GN=DC,∠GNF=∠NGD=90°,
∴∠NGF+∠FGD=90°,
∵FG⊥DH,四邊形ABCD是矩形,
∴AD=BC,∠FGD+∠GDM=90°,∠GNF=∠A,
∴∠GDM=∠NGF,
∴△GNF∽△DAH,
∴,
∴==,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),直線分別交軸,軸于、兩點(diǎn).
(1)求直線的解析式;
(2)點(diǎn)為直線上一動(dòng)點(diǎn),以為頂點(diǎn)的拋物線與直線的另一交點(diǎn)為 (如圖1),連、,在點(diǎn)的運(yùn)動(dòng)過(guò)程中的面積是否變化,若變化,求出的范圍;若不變,求出的值;
(3)平移(2)中的拋物線,使頂點(diǎn)為,拋物線與軸的正半軸交于點(diǎn) (如圖2) ,,為拋物線上兩點(diǎn),若以為直徑的圓經(jīng)過(guò)點(diǎn),求直線經(jīng)過(guò)的定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA,PB切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,交PA,PB于C,D.若⊙O的半徑為r,△PCD的周長(zhǎng)等于3r,則tan∠APB的值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+4x﹣3與x軸交于點(diǎn)A、B,把拋物線在x軸及其上方的部分記作C1,將C1向右平移得到C2,C2與x軸交于B、D兩點(diǎn).若直線y=kx﹣k與C1、C2共有3個(gè)不同的交點(diǎn),則k的最大值是( 。
A.B.2﹣6C.6+4D.6﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn),與軸的另一個(gè)交點(diǎn)為,且頂點(diǎn)坐標(biāo)為.
(1)求拋物線解析式.
(2)將拋物線向右平移個(gè)單位,所得拋物線與軸交于兩點(diǎn),與原拋物線交于點(diǎn),設(shè)的面積為,求關(guān)于的函數(shù)關(guān)系式.
(3)如圖②,以點(diǎn)為圈心,以線段為半徑畫(huà)圓,交拋物線的對(duì)稱(chēng)軸于點(diǎn),連結(jié),若將拋物線向右平移個(gè)單位后,點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,且滿(mǎn)足四邊形為菱形,平移后的拋物線的對(duì)稱(chēng)軸與菱形的對(duì)角線交于點(diǎn)問(wèn):在軸上是否存在一點(diǎn),使得以,為頂點(diǎn)的三角形與相似?若存在,求出F點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:直線y=x與反比例函數(shù)y=(k>0)的圖象在第一象限內(nèi)交于點(diǎn)A(2,m).
(1)求m、k的值;
(2)點(diǎn)B在y軸負(fù)半軸上,若△AOB的面積為2,求AB所在直線的函數(shù)表達(dá)式;
(3)將△AOB沿直線AB向上平移,平移后A、O、B的對(duì)應(yīng)點(diǎn)分別為A'、O'、B',當(dāng)點(diǎn)O'恰好落在反比例函數(shù)y=的圖象上時(shí),求點(diǎn)A'的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的邊長(zhǎng)AD=3,AB=2,∠BAD=120°,E為AB的中點(diǎn),F在邊BC上,且BF=2FC.AF與DE交于點(diǎn)G,則AG的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高市民的環(huán)保意識(shí),某市發(fā)出“節(jié)能減排,綠色出行”的倡導(dǎo),某企業(yè)抓住機(jī)遇投資20萬(wàn)元購(gòu)買(mǎi)并投放一批A型“共享單車(chē)”,因?yàn)閱诬?chē)需求量增加,計(jì)劃繼續(xù)投放B型單車(chē),B型單車(chē)的投放數(shù)量與A型單車(chē)的投放數(shù)量相同,投資總費(fèi)用減少20%,購(gòu)買(mǎi)B型單車(chē)的單價(jià)比購(gòu)買(mǎi)A型單車(chē)的單價(jià)少50元,則A型單車(chē)每輛車(chē)的價(jià)格是多少元?設(shè)A型單車(chē)每輛車(chē)的價(jià)格為x元,根據(jù)題意,列方程正確的是( 。
A.=
B.=
C.=
D.=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m為實(shí)數(shù));⑤4ac﹣b2<0.其中錯(cuò)誤結(jié)論的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com