.已知,點(diǎn)P是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系是__________,QE與QF的數(shù)量關(guān)系式__________;
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請畫出圖形并給予證明.
【考點(diǎn)】全等三角形的判定與性質(zhì);直角三角形斜邊上的中線.
【專題】壓軸題.
【分析】(1)證△BFQ≌△AEQ即可;
(2)證△FBQ≌△DAQ,推出QF=QD,根據(jù)直角三角形斜邊上中線性質(zhì)求出即可;
(3)證△AEQ≌△BDQ,推出DQ=QE,根據(jù)直角三角形斜邊上中線性質(zhì)求出即可.
【解答】解:(1)AE∥BF,QE=QF,
理由是:如圖1,∵Q為AB中點(diǎn),
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,∠BFQ=∠AEQ=90°,
在△BFQ和△AEQ中
∴△BFQ≌△AEQ(AAS),
∴QE=QF,
故答案為:AE∥BF;QE=QF.
(2)QE=QF,
證明:如圖2,延長FQ交AE于D,
∵Q為AB中點(diǎn),
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,
∴∠QAD=∠FBQ,
在△FBQ和△DAQ中
∴△FBQ≌△DAQ(ASA),
∴QF=QD,
∵AE⊥CP,
∴EQ是直角三角形DEF斜邊上的中線,
∴QE=QF=QD,
即QE=QF.
(3)(2)中的結(jié)論仍然成立,
證明:如圖3,
延長EQ、FB交于D,
∵Q為AB中點(diǎn),
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,
∴∠1=∠D,
在△AQE和△BQD中,
,
∴△AQE≌△BQD(AAS),
∴QE=QD,
∵BF⊥CP,
∴FQ是斜邊DE上的中線,
∴QE=QF.
【點(diǎn)評(píng)】本題考查了全等三角形的性質(zhì)和判定,直角三角形斜邊上中線性質(zhì)的應(yīng)用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的性質(zhì)是:全等三角形的對應(yīng)邊相等,對應(yīng)角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,CD⊥AB于點(diǎn)D,BE⊥AC于點(diǎn)E,F(xiàn)為BC的中點(diǎn),DE=5,BC=8,則△DEF的周長是( )
A.21 B.18 C.13 D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知△ABC中,AB=AC,AB邊上的垂直平分線DE交AC于點(diǎn)E,D為垂足,若∠ABE:∠EBC=2:1,則∠A=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
.如圖,校園有兩條路OA、OB,在交叉路口附近有兩塊宣傳牌C、D,學(xué)校準(zhǔn)備在這里安裝一盞路燈,要求燈柱的位置P離兩塊宣傳牌一樣遠(yuǎn),并且到兩條路的距離也一樣遠(yuǎn),請你幫助畫出燈柱的位置P,簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等三角形的對數(shù)是( )
A.1對 B.2對 C.3對 D.4對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖,點(diǎn)E、A、C在同一條直線上,AB∥CD,AB=CE,∠B=∠E.
(1)求證:△ABC≌△CED;
(2)若∠B=25°,∠ACB=45°,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
用四舍五入法,把1890mL(精確到1000mL) 取近似值萬,用科學(xué)記數(shù)法可表示為__________mL.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com