【題目】小東同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)y 進(jìn)行了探究,下面是他的探究過(guò)程:
(1)已知x=-3時(shí) 0;x=1 時(shí) 0,化簡(jiǎn):
①當(dāng)x<-3時(shí),y=
②當(dāng)-3≤x≤1時(shí),y=
③當(dāng)x>1時(shí),y=
(2)在平面直角坐標(biāo)系中畫出y 的圖像,根據(jù)圖像,寫出該函數(shù)的一條性質(zhì).
(3)根據(jù)上面的探究解決,下面問(wèn)題:
已知A(a,0)是x軸上一動(dòng)點(diǎn),B(1,0),C(-3,0),則AB+AC的最小值是
【答案】(1)①-2-2x;②4;③2x+2;(2)圖象見(jiàn)解析,函數(shù)圖象不過(guò)原點(diǎn);(3)4
【解析】
(1)根據(jù)已知條件及絕對(duì)值的化簡(jiǎn)法則計(jì)算即可;
(2)畫出函數(shù)圖象,則易得一條函數(shù)性質(zhì);
(3)A(a,0)位于點(diǎn)B(1,0)和點(diǎn)C(-3,0)之間時(shí),AB+AC等于線段BC的長(zhǎng),此時(shí)為其最小值.
(1)∵x=-3時(shí)|x+3|=0;x=1時(shí)|x-1|=0
∴①當(dāng)x<-3時(shí),y=1-x-x-3=-2-2x;
②當(dāng)-3≤x≤1時(shí),y=1-x+x+3=4;
③當(dāng)x>1時(shí),y=x-1+x+3=2x+2;
故答案為:-2-2x;4;2x+2.
(2)在平面直角坐標(biāo)系中畫出y=|x-1|+|x+3|的圖象,如圖所示:
根據(jù)圖象,該函數(shù)圖象不過(guò)原點(diǎn).
故答案為:函數(shù)圖象不過(guò)原點(diǎn);
(3)根據(jù)上面的探究可知當(dāng)A(a,0)位于點(diǎn)B(1,0)和點(diǎn)C(-3,0)之間時(shí),AB+AC有最小值4.
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O,E為圓心,OA、ED長(zhǎng)為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,,分別是邊,的中點(diǎn),在邊上取點(diǎn),點(diǎn)在邊上,且滿足,連接,作于點(diǎn),于點(diǎn),線段,,將分割成I、II、III、IV四個(gè)部分,將這四個(gè)部分重新拼接可以得到如圖2所示的矩形,若,則圖1中的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高飲水質(zhì)量,越來(lái)越多的居民開(kāi)始選購(gòu)家用凈水器.一商家抓住商機(jī),從廠家購(gòu)進(jìn)了A、B兩種型號(hào)家用凈水器共160臺(tái),A型號(hào)家用凈水器進(jìn)價(jià)是150元/臺(tái),B型號(hào)家用凈水器進(jìn)價(jià)是350元/臺(tái),購(gòu)進(jìn)兩種型號(hào)的家用凈水器共用去36000元.
(1)求A、B兩種型號(hào)家用凈水器各購(gòu)進(jìn)了多少臺(tái);
(2)為使每臺(tái)B型號(hào)家用凈水器的毛利潤(rùn)是A型號(hào)的2倍,且保證售完這160臺(tái)家用凈水器的毛利潤(rùn)不低于11000元,求每臺(tái)A型號(hào)家用凈水器的售價(jià)至少是多少元?(注:毛利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊三角形的邊長(zhǎng)為4,點(diǎn)是△的中心,.繞點(diǎn)旋轉(zhuǎn),分別交線段于兩點(diǎn),連接,給出下列四個(gè)結(jié)論:①;②;③四邊形的面積始終等于;④△周長(zhǎng)的最小值為6,上述結(jié)論中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B、C重合),∠ADE=∠B=α,DE交AC于點(diǎn)E,且cos∠α=,下列結(jié)論:①△ADE∽△ACD;②當(dāng)BD=6時(shí),△ABD與△DCE全等;③△DCE為直角三角形時(shí),BD為8或;④0<CE≤6.4.其中正確的結(jié)論是_________.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,在△ABC中,點(diǎn)O是AC上一點(diǎn),過(guò)點(diǎn)O的直線與AB,BC的延長(zhǎng)線分別相交于點(diǎn)M,N.
【問(wèn)題引入】
(1)若點(diǎn)O是AC的中點(diǎn), ,求的值;
溫馨提示:過(guò)點(diǎn)A作MN的平行線交BN的延長(zhǎng)線于點(diǎn)G.
【探索研究】
(2)若點(diǎn)O是AC上任意一點(diǎn)(不與A,C重合),求證: ;
【拓展應(yīng)用】
(3)如圖②所示,點(diǎn)P是△ABC內(nèi)任意一點(diǎn),射線AP,BP,CP分別交BC,AC,AB于點(diǎn)D,E,F(xiàn).若, ,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=8,點(diǎn)E為AD上一點(diǎn),將△ABE沿BE折疊得到△FBE,點(diǎn)G為CD上一點(diǎn),將△DEG沿EG折疊得到△HEG,且E、F、H三點(diǎn)共線,當(dāng)△CGH為直角三角形時(shí),AE的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開(kāi)學(xué),利用網(wǎng)上平臺(tái),停課不停學(xué)”,某校對(duì)初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)抽取部分學(xué)生的4月月診斷性測(cè)試成績(jī),按由高到低分為A,B,C,D四個(gè)等級(jí),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)該校共抽查了 名同學(xué)的數(shù)學(xué)測(cè)試成績(jī),扇形統(tǒng)計(jì)圖中A等級(jí)所占的百分比a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校初三共有1180名同學(xué),請(qǐng)估計(jì)該校初三學(xué)生數(shù)學(xué)測(cè)試成績(jī)優(yōu)秀(測(cè)試成績(jī)B級(jí)以上為優(yōu)秀,含B級(jí))約有 名;
(4)該校老師想從兩男、兩女四位學(xué)生中隨機(jī)選擇兩位了解平時(shí)線上學(xué)習(xí)情況,請(qǐng)用列表或畫樹(shù)形圖的方法求出恰好選中一男一女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com