推理證明:如圖,已知△ABC中,AB=BC,以AB為直徑的⊙OAC于點(diǎn)DDDEBC,垂足為E,連結(jié)OE,CD=,∠ACB=30°.

(1)求證:DE是⊙O的切線;
(2)分別求AB,OE的長;
(3)填空:如果以點(diǎn)E為圓心,r為半徑的圓上總存在不同的兩點(diǎn)到點(diǎn)O的距離為1,則r的取值范圍為        .
(1)見解析(2)2,(3)
(1)證明:連接BD
∵AB是直徑,
∴∠ADB=90°
又∵AB=BC,
∴AD=CD,
∴OD∥BC
∴OD⊥DE,
∴DE是⊙O的切線.(4分)
(2)解:在Rt△CBD中CD=  ,∠ACB=30°,
∴BC="CD8" cos30° = =2,
∴AB=2.
在Rt△CDE中,CD= ,∠ACB=30°,
∴DE= CD=× =  .
在Rt△ODE中,OE==
(3)………9分
(1)根據(jù)AB是直徑即可求得∠ADB,再根據(jù)題意可求出OD⊥DE,即得出結(jié)論;
(2)根據(jù)三角函數(shù)的定義,即可求得AB,再在Rt△CDE中,根據(jù)直角三角形的性質(zhì),可求得DE,再由勾股定理求出OE即可
(3)根據(jù)兩圓的位置關(guān)系解答
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知半徑為2的⊙O與直線l相切于點(diǎn)A,點(diǎn)P是直徑AB左側(cè)半圓上的動點(diǎn),過點(diǎn)P作直線l的垂線,垂足為C,PC與⊙O交于點(diǎn)D,連接PA、PB,設(shè)PC的長為x(2<x<4)
小題1:當(dāng) 時(shí),求弦PA、PB的長度;
小題2:當(dāng)x為何值時(shí),PD×CD的值最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在邊長為1的正方形中,以各頂點(diǎn)為圓心,對角線的長的一半為半徑在正方形內(nèi)畫弧,則圖中陰影部分的面積為(  )               
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,圓O的半徑OC垂直弦AB于點(diǎn)H,連接BC,過點(diǎn)A作弦AE//BC,過點(diǎn)C作CD∥BA交EA延長線于點(diǎn)D,延長CO交AE于點(diǎn)F.
小題1:求征:CD為圓0的切線
小題2:若BC =5.AB=8,求OF的長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,上一點(diǎn),點(diǎn)在直徑的延長線上,
小題1:求證:的切線
小題2:過點(diǎn)的切線交的延長線于點(diǎn),若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為⊙O的直徑,點(diǎn)C、D在⊙O上,∠ADC =48°,則∠BAC=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

圖中圓與圓之間不同的位置關(guān)系有                 
A.2種B.3種C.4種D.5種

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在半徑是20cm的圓中,90°的圓心角所對的弧長為        cm.(精確到0.1 cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)扇形的圓心角為120°,半徑為1,則這個(gè)扇形的弧長為                

查看答案和解析>>

同步練習(xí)冊答案