【題目】如圖,點(diǎn)為矩形的對角線上一動(dòng)點(diǎn),,,點(diǎn)為邊的中點(diǎn),則周長的最小值是_________.
【答案】
【解析】
先確定出點(diǎn)P的位置,再求出∠CBD=30°,進(jìn)而判斷出△BCC是等邊三角形,即可得出結(jié)論.
解:如圖,作點(diǎn)C關(guān)于BD的對稱點(diǎn)C,連接EC交BD于點(diǎn)P,連接PC,
∵點(diǎn)C與點(diǎn)C是關(guān)于BD的對稱點(diǎn),
∴CP=CP,
∴CP+PE=CP+PE=CE,
在BD上任取異于點(diǎn)P的P,連接PE,PC,CP,
CP+PE=PC+PE>CE,
∴點(diǎn)P就是所要求作的點(diǎn),EC的長度PE + PC的最小值,
∵四邊形ABCD是矩形,
∴∠BCD=90°
∵DC=AB=2,
∵tan∠CBD=
∴∠ CBD= 30°,
∴點(diǎn)C和點(diǎn)C關(guān)于BD對稱,設(shè)CC交BD于G,
∴ BD是CC的垂直平分線,連接BC
∴∠CBD=∠CBD=30°, BC=BC,
∴∠ CBC= 60°,
∴△BCC是等邊三角形,
∵點(diǎn)E是BC的中點(diǎn),∴CE⊥BC,
∴CE=
∴PC+PE=3, ∵E是BC的中點(diǎn),∴CE=
∴周長的最小值是:PC+PE+CE=3+
故答案為:3+
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車油箱中有汽油.如果不再加油,那么油箱中的油量(單位:)隨行駛路程(單位:)的增加而減少.已知該汽車平均耗油量為.
(Ⅰ)計(jì)算并填寫下表:
(單位:) | 10 | 100 | 300 | … |
(單位:) | … |
(Ⅱ)寫出表示與的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(Ⅲ)若,兩地的路程約有,當(dāng)油箱中油量少于時(shí),汽車會自動(dòng)報(bào)警,則這輛汽車在由地到地,再由地返回地的往返途中,汽車是否會報(bào)警?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在直角坐標(biāo)系中,有菱形,點(diǎn)的坐標(biāo)為,對角線,相交于點(diǎn),反比例函數(shù)經(jīng)過點(diǎn),交的延長線于點(diǎn),且,則點(diǎn)的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點(diǎn)P是CD延長線上一點(diǎn),且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若PD=1,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,,,過點(diǎn)、向過點(diǎn)的直線作垂線,垂足分別為、,交于點(diǎn).
(1)如圖,求證:;
(2)如圖,連接、,若,在不添加任何輔助線的情況下,請直接寫出四個(gè)角,使寫出的每一個(gè)角的正切值都等于.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓交BC于D,過D作⊙O的切線EF交AC于E,交AB延長線于F.
(1)求證:DE⊥AC.
(2)若BD=2,tan∠CDE=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P1(x1,y1)、P2(x2,y2)、P3(x3,y3),……,Pn(xn,yn)均在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)Q1、Q2、Q3、……、Qn均在x軸的正半軸上,且△OP1Q1、△Q1P2Q2、△Q2P3Q3、…、△Qn﹣1PnQn均為等腰直角三角形,OQ1、Q1Q2、Q2Q3、……、Qn﹣1Qn分別為以上等腰直角三角形的底邊,則y1+y2+y3+…+y2019的值等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,點(diǎn)是的中點(diǎn),以為直徑做分別交,于點(diǎn),.
(1)求證:.
(2)如圖2,連,,當(dāng)時(shí),求證:四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)y=x2+mx+1,當(dāng)0<x≤2時(shí)的函數(shù)值總是非負(fù)數(shù),則實(shí)數(shù)m的取值范圍為( )
A. m≥﹣2 B. ﹣4≤m≤﹣2 C. m≥﹣4 D. m≤﹣4或m≥﹣2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com