【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn)A(﹣1,0),B(0,),C(2,0),其對稱軸與x軸交于點(diǎn)D

(1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);

(2)若P為y軸上的一個動點(diǎn),連接PD,則PB+PD的最小值為 ;

(3)M(x,t)為拋物線對稱軸上一動點(diǎn)

①若平面內(nèi)存在點(diǎn)N,使得以A,B,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有 個;

②連接MA,MB,若AMB不小于60°,求t的取值范圍.

【答案】(1),頂點(diǎn)坐標(biāo)(,;(2);(3)5;t

【解析】(1)由題意得:,解得拋物線解析式為,=,頂點(diǎn)坐標(biāo)().

(2)如圖1中,連接AB,作DHAB于H,交OB于P,此時PB+PD最。

理由:OA=1,OB=,tanABO=,∴∠ABO=30°,PH=PB,PB+OD=PH+PD=DH,此時PB+PD最短(垂線段最短).

在RTADH中,∵∠AHD=90°,AD=,HAD=60°,sin60°=,DH=,PB+PD的最小值為.故答案為:

(3)①以A為圓心AB為半徑畫弧與對稱軸有兩個交點(diǎn),以B為圓心AB為半徑畫弧與對稱軸也有兩個交點(diǎn),線段AB的垂直平分線與對稱軸有一個交點(diǎn),所以滿足條件的點(diǎn)M有5個,即滿足條件的點(diǎn)N也有5個,故答案為:5.

②如圖,RTAOB中,tanABO=,∴∠ABO=30°,作AB的中垂線與y軸交于點(diǎn)E,連接EA,則AEB=120°,以E為圓心,EB為半徑作圓,與拋物線對稱軸交于點(diǎn)F、G.

AFB=AGB=60°,從而線段FG上的點(diǎn)滿足題意,EB==,OE=OB﹣EB=,F(,t),,解得t=,故F(,),G(,),t的取值范圍t

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A點(diǎn)作BC的平行線,交CE的延長線于點(diǎn)F,且AF=BD,連接BF.

(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC中,∠C=90°,線段DE在射線BC上,且DE=AC,線段DE沿射線BC運(yùn)動,開始時,點(diǎn)D與點(diǎn)B重合,點(diǎn)D到達(dá)點(diǎn)C時運(yùn)動停止,過點(diǎn)D作DF=DB,與射線BA相交于點(diǎn)F,過點(diǎn)E作BC的垂線,與射線BA相交于點(diǎn)G.設(shè)BD=x,四邊形DEGF與△ABC重疊部分的面積為S,S關(guān)于x的函數(shù)圖象如圖2所示(其中0<x≤m,1<x≤m,m<x≤3時,函數(shù)的解析式不同)

(1)填空:BC的長是

(2)求S關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,DCE80°,則BEF=( )

A. 120° B. 110° C. 100° D. 80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖。

(1)觀察發(fā)現(xiàn):如圖1,已知Rt△ABC,∠ABC=90°,分別以AB,BC為邊,向外作正方形ABDE和正方形BCFG,連接DG.若M是DG的中點(diǎn),不難發(fā)現(xiàn):BM= AC.
請完善下面證明思路:①先根據(jù) ,證明BM= DG;②再證明 ,得到DG=AC;所以BM= AC;
(2)數(shù)學(xué)思考:若將上題的條件改為:“已知Rt△ABC,∠ABC=90°,分別以AB,AC為邊向外作正方形ABDE和正方形ACHI,N是EI的中點(diǎn)”,則相應(yīng)的結(jié)論“AN= BC”成立嗎?小穎通過添加如圖2所示的輔助線驗證了結(jié)論的正確性.請寫出小穎所添加的輔助線的作法,并由此證明該結(jié)論;
(3)拓展延伸:如圖3,已知等腰△ABC和等腰△ADE,AB=AC,AD=AE.連接BE,CD,若P是CD的中點(diǎn),探索:當(dāng)∠BAC與∠DAE滿足什么條件時,AP= BE,并簡要說明證明思路.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,Ab=6cm,BC=8cm,對角線AC,BD交于點(diǎn)0.點(diǎn)P從點(diǎn)A出發(fā),沿方向勻速運(yùn)動,速度為1cm/s;同時,點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動,速度為1cm/s;當(dāng)一個點(diǎn)停止運(yùn)動時,另一個點(diǎn)也停止運(yùn)動.連接PO并延長,交BC于點(diǎn)E,過點(diǎn)Q作QF∥AC,交BD于點(diǎn)F.設(shè)運(yùn)動時間為t(s)(0<t<6),解答下列問題:

(1)當(dāng)t為何值時,△AOP是等腰三角形?

(2)設(shè)五邊形OECQF的面積為S(cm2),試確定S與t的函數(shù)關(guān)系式;

(3)在運(yùn)動過程中,是否存在某一時刻t,使S五邊形S五邊形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,請說明理由;

(4)在運(yùn)動過程中,是否存在某一時刻t,使OD平分∠COP?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)便民超市為了了解顧客的消費(fèi)情況,在該小區(qū)居民中進(jìn)行調(diào)查,詢問每戶人家每周到超市的次數(shù),下圖是根據(jù)調(diào)查結(jié)果繪制的,請問:
(1)這種統(tǒng)計圖通常被稱為什么統(tǒng)計圖?
(2)此次調(diào)查共詢問了多少戶人家?
(3)超過半數(shù)的居民每周去多少次超市?
(4)請將這幅圖改為扇形統(tǒng)計圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的頂點(diǎn)C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線與y軸相交于點(diǎn)A,拋物線的對稱軸與x軸相交于點(diǎn)B,與CD交于點(diǎn)K.

(1)將矩形OCDE沿AB折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)F處.

①點(diǎn)B的坐標(biāo)為( 、 ),BK的長是 ,CK的長是 ;

②求點(diǎn)F的坐標(biāo);

③請直接寫出拋物線的函數(shù)表達(dá)式;

(2)將矩形OCDE沿著經(jīng)過點(diǎn)E的直線折疊,點(diǎn)O恰好落在邊CD上的點(diǎn)G處,連接OG,折痕與OG相交于點(diǎn)H,點(diǎn)M是線段EH上的一個動點(diǎn)(不與點(diǎn)H重合),連接MG,MO,過點(diǎn)G作GP⊥OM于點(diǎn)P,交EH于點(diǎn)N,連接ON,點(diǎn)M從點(diǎn)E開始沿線段EH向點(diǎn)H運(yùn)動,至與點(diǎn)N重合時停止,△MOG和△NOG的面積分別表示為S1和S2,在點(diǎn)M的運(yùn)動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.

溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC和△DBE均為等腰直角三角形.
(1)求證:AD=CE;
(2)求證:AD和CE垂直.

查看答案和解析>>

同步練習(xí)冊答案