【題目】如圖,在中,,的垂直平分線交于點(diǎn),交于點(diǎn).
(1)若,求的長(zhǎng);
(2)若,求證:是等腰三角形.
【答案】(1);(2)見解析.
【解析】
(1)根據(jù)線段垂直平分線的性質(zhì)可得EA=EB,即,結(jié)合可求出,進(jìn)而得到CE的長(zhǎng);
(2)根據(jù)三角形內(nèi)角和定理和等腰三角形的性質(zhì)求出∠C=72°,根據(jù)線段垂直平分線的性質(zhì)可得EA=EB,求出∠EBA=∠A=36°,然后利用三角形外角的性質(zhì)得到∠BEC=72°即可得出結(jié)論.
解:(1)∵DE是AB的垂直平分線,
∴EA=EB,
∴,
∵,
∴,
∴;
(2)∵,,
∴∠ABC=∠C=,
∵DE是AB的垂直平分線,
∴EA=EB,
∴∠EBA=∠A=36°,
∴∠BEC=∠EBA+∠A=72°,
∴∠C=∠BEC,
∴BC=BE,即是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測(cè)量操場(chǎng)旗桿AB的高度,他們通過調(diào)整測(cè)量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點(diǎn)A在同一直線上,已知DE=0.5米,EF=0.25米,目測(cè)點(diǎn)D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,半徑OC垂直AB,D為弧AC上任意一點(diǎn),E為弦BD上一點(diǎn),且BE=AD
(1)試判斷△CDE的形狀,并加以證明.
(2)若∠ABD=15°,AO=4,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵政部門規(guī)定:信函重100克以內(nèi)(包括100克)每20克貼郵票0.8元,不足20克重以20克計(jì)算;超過100克,先貼郵票4元,超過100克部分每100克加貼郵票2元,不足100克重以100克計(jì)算.八(9)班有11位同學(xué)參加項(xiàng)目化學(xué)習(xí)知識(shí)競(jìng)賽,若每份答卷重12克,每個(gè)信封重4克,將這11份答卷分裝在兩個(gè)信封中寄出,所貼郵票的總金額最少是_________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線在平面直角坐標(biāo)系中的位置如圖所示,則下列結(jié)論:
①;②;③;④.
其中,正確的結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AB=BC,∠B=60°,E是BC邊上一點(diǎn).
(1)如圖1,若E是BC的中點(diǎn),∠AED=60°,求證:CE=CD;
(2)如圖2,若∠EAD=60°,求證:△AED是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為正方形外的一點(diǎn),,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),使點(diǎn)旋轉(zhuǎn)至點(diǎn),且,則的度數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN分別與直線AC、DG交于點(diǎn)B.F,且∠1=∠2.∠ABF的角平分線BE交直線DG于點(diǎn)E,∠BFG的角平分線FC交直線AC于點(diǎn)C.
(1)求證:BE∥CF;
(2)若∠C=35°,求∠BED的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com