如圖,二次函數(shù)的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B.C在x軸上,A.D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi)。

(1)求二次函數(shù)的解析式;
(2)設(shè)點(diǎn)D的坐標(biāo)為(x,y),試求矩形ABCD的周長(zhǎng)P關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長(zhǎng)為9?試證明你的結(jié)論。
(1) y=-x2+2;(2)p=-(x+2)2+8,其中-2<x<2;(3)不存在,證明見解析.

試題分析:(1)由頂點(diǎn)坐標(biāo)(0,2)可直接代入y=-mx2+4m,求得m=,即可求得拋物線的解析式;
(2)由圖及四邊形ABCD為矩形可知AD∥x軸,長(zhǎng)為2x的據(jù)對(duì)值,AB的長(zhǎng)為A點(diǎn)的總坐標(biāo),由x與y的關(guān)系,可求得p關(guān)于自變量x的解析式,因?yàn)榫匦蜛BCD在拋物線里面,所以x小于0,大于拋物線與x負(fù)半軸的交點(diǎn);
(3)由(2)得到的p關(guān)于x的解析式,可令p=9,求x的方程,看x是否有解,有解則存在,無解則不存在,顯然不存在這樣的p.
試題解析:(1)∵二次函數(shù)y=-mx2+4m的頂點(diǎn)坐標(biāo)為(0,2),
∴4m=2,
即m=,
∴拋物線的解析式為:y=-x2+2;
(2)∵D點(diǎn)在x軸的正方向上坐標(biāo)為(x,y),四邊形ABCD為矩形,BC在x軸上,
∴AD∥x軸,
又由拋物線關(guān)于y軸對(duì)稱,
所以D、C點(diǎn)關(guān)于y軸分別與A、B對(duì)稱.
所以AD的長(zhǎng)為2x,AB長(zhǎng)為y,
所以周長(zhǎng)p=2y+4x=2(-x2+2)-4x=-(x+2)2+8.
∵D在拋物線上,且ABCD組成矩形,
∴x<2,
∵四邊形ABCD為矩形,
∴y>0,
即x>-2.
所以p=-(x+2)2+8,其中-2<x<2.
(3)不存在,
證明:假設(shè)存在這樣的p,即:9=-(x+2)2+8,
解此方程得:x無解,所以不存在這樣的p.
考點(diǎn): 二次函數(shù)綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交軸于點(diǎn),交軸于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),已知點(diǎn)坐標(biāo)為(6,0).

(1)求此拋物線的解析式;
(2)聯(lián)結(jié)AB,過點(diǎn)作線段的垂線交拋物線于點(diǎn),如果以點(diǎn)為圓心的圓與拋物線的對(duì)稱軸相切,先補(bǔ)全圖形,再判斷直線與⊙的位置關(guān)系并加以證明;
(3)已知點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn),且位于,兩點(diǎn)之間.問:當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),的面積最大?求出的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正常水位時(shí),拋物線拱橋下的水面寬為BC=20m,水面上升3m達(dá)到該地警戒水位DE時(shí),橋下水面寬為10m.若以BC所在直線為x軸,BC的垂直平分線為y軸,建立如圖所示的平面直角坐標(biāo)系.

(1)求橋孔拋物線的函數(shù)關(guān)系式;
(2)如果水位以0.2m/h的速度持續(xù)上漲,那么達(dá)到警戒水位后,再過多長(zhǎng)時(shí)間此橋孔將被淹沒;
(3)當(dāng)達(dá)到警戒水位時(shí),一艘裝有防汛器材的船,露出水面部分的寬為4m,高為0.75m,通過計(jì)算說明該船能否順利通過此拱橋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的方程
(1)當(dāng)k取何值時(shí),方程有兩個(gè)實(shí)數(shù)根;
(2)若二次函數(shù)的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù),求k值并用配方法求出拋物線的頂點(diǎn)坐標(biāo);
(3)若(2)中的拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).將拋物線向上平移n個(gè)單位,使平移后得到的拋物線的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

天貓商城旗艦店銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%.
(1)設(shè)該旗艦店每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?
(3)如果旗艦店想要每月獲得的利潤(rùn)不低于2000元,那么每月的成本最少需要     元?
(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某中學(xué)校園有一塊長(zhǎng)為35m,寬為16m的長(zhǎng)方形空地,其中有一面已經(jīng)鋪設(shè)長(zhǎng)為26m的籬笆圍墻,學(xué)校設(shè)計(jì)在這片空地上,利用這面圍墻和用盡已有的可制作50m長(zhǎng)的籬笆材料,圍成一個(gè)矩形花園或圍成一個(gè)半圓花園,請(qǐng)回答以下問題:

(1)能否圍成面積為300m2的矩形花園?若能,請(qǐng)寫出其中一種設(shè)計(jì)方案,若不能,請(qǐng)說明理由.
(2)若圍成一個(gè)半圓花園,則該如何設(shè)計(jì)?請(qǐng)寫出你的設(shè)計(jì)方案.(π取3.14)
(3)圍成的各種設(shè)計(jì)中,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

小明從右邊的二次函數(shù)圖象中,觀察得出了下面的五條信息:①,②,③函數(shù)的最小值為,④當(dāng)時(shí),,⑤當(dāng)時(shí),(6)對(duì)稱軸是直線x=2.你認(rèn)為其中正確的個(gè)數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在同一坐標(biāo)系中,二次函數(shù)的圖象都具有的特征是       (只寫一條).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,拋物線)與軸的兩個(gè)交點(diǎn)分別為,當(dāng)時(shí),的取值范圍是       

查看答案和解析>>

同步練習(xí)冊(cè)答案