天貓商城旗艦店銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):,在銷售過程中銷售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%.
(1)設(shè)該旗艦店每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.
(2)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?
(3)如果旗艦店想要每月獲得的利潤(rùn)不低于2000元,那么每月的成本最少需要     元?
(成本=進(jìn)價(jià)×銷售量)
(1)w=-10x2+700x-10000(20≤x≤32);(2)當(dāng)銷售單價(jià)定為32元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)是2160元;(3)3600.

試題分析:(1)由題意得,每月銷售量與銷售單價(jià)之間的關(guān)系可近似看作一次函數(shù),利潤(rùn)=(定價(jià)-進(jìn)價(jià))×銷售量,從而列出關(guān)系式;
(2)首先確定二次函數(shù)的對(duì)稱軸,然后根據(jù)其增減性確定最大利潤(rùn)即可;
(3)根據(jù)拋物線的性質(zhì)和圖象,求出每月的成本.
試題解析:(1)由題意,得:w=(x-20)•y=(x-20)•(-10x+500)=-10x2+700x-10000,
即w=-10x2+700x-10000(20≤x≤32).
(2)對(duì)于函數(shù)w=-10x2+700x-10000的圖象的對(duì)稱軸是直線
又∵a=-10<0,拋物線開口向下.∴當(dāng)20≤x≤32時(shí),W隨著X的增大而增大.
∴當(dāng)x=32時(shí),W=2160.
答:當(dāng)銷售單價(jià)定為32元時(shí),每月可獲得最大利潤(rùn),最大利潤(rùn)是2160元.
(3)取W=2000得,-10x2+700x-10000=2000
解這個(gè)方程得:x1=30,x2=40.
∵a=-10<0,拋物線開口向下.
∴當(dāng)30≤x≤40時(shí),w≥2000.
∵20≤x≤32,∴當(dāng)30≤x≤32時(shí),w≥2000.
設(shè)每月的成本為P(元),由題意,得:P=20(-10x+500)=-200x+10000,
∵k=-200<0,∴P隨x的增大而減小.
∴當(dāng)x=32時(shí),P的值最小,P最小值=3600.
答:想要每月獲得的利潤(rùn)不低于2000元,小明每月的成本最少為3600元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

以直線為對(duì)稱軸的拋物線軸交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為.
(1)求點(diǎn)B的坐標(biāo);
(2)設(shè)點(diǎn)M、N在拋物線線上,且,試比較、的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某超市準(zhǔn)備進(jìn)一批每個(gè)進(jìn)價(jià)為40元的小家電,經(jīng)市場(chǎng)調(diào)查預(yù)測(cè),售價(jià)定為50元時(shí)可售出400個(gè);定價(jià)每增加1元,銷售量將減少10個(gè).
(1)設(shè)每個(gè)定價(jià)增加元,此時(shí)的銷售量是多少?(用含的代數(shù)式表示)
(2)超市若準(zhǔn)備獲得利潤(rùn)6000元,并且使進(jìn)貨量較少,則每個(gè)應(yīng)定價(jià)為多少元?
(3)超市若要獲得最大利潤(rùn),則每個(gè)應(yīng)定價(jià)多少元?獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若二次函數(shù)的圖象經(jīng)過點(diǎn)P(2,8),則該圖象必經(jīng)過點(diǎn)
A.(2,-8)B.(-2,8)C.(8,-2)D.(-8,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,P是拋物線上的一點(diǎn),以點(diǎn)P為圓心、1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線y=2相切時(shí),點(diǎn)P的坐標(biāo)為                  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)的頂點(diǎn)坐標(biāo)為(0,2),矩形ABCD的頂點(diǎn)B.C在x軸上,A.D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi)。

(1)求二次函數(shù)的解析式;
(2)設(shè)點(diǎn)D的坐標(biāo)為(x,y),試求矩形ABCD的周長(zhǎng)P關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長(zhǎng)為9?試證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于點(diǎn)C,x1,x2是方程x2+4x﹣5=0的兩根.
(1)若拋物線的頂點(diǎn)為D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請(qǐng)寫出一個(gè)開口向上,并且與y軸交于點(diǎn)(0,-1)的拋物線的解析式__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=-(x+1)2-1的頂點(diǎn)坐標(biāo)為          .  

查看答案和解析>>

同步練習(xí)冊(cè)答案