已知:如圖,四邊形ABCD是菱形,E是BD延長線上一點,F(xiàn)是DB延長線上一點,且DE=BF.請你以F為一個端點,和圖中已標(biāo)明字母的某一點連成一條新的線段,猜想并證明它和圖中已有的某一條線段相等(只須證明一組線段相等即可).
(1)連接 ;
(2)猜想: = ;
(3)證明:
(1)連結(jié)AF
(2)AF=AE
(3)證明:
∵四邊形ABCD是菱形
∴AB=AD
∴∠ADB=∠ABD
∵∠ABD+∠ABF=180°
∠ADB+∠ADE=180°
∴∠ABF=∠ADE
∵BF = DE
∴△ABF≌△ADE(SAS)
∴AF=AE
解析試題分析:根據(jù)觀察圖形,應(yīng)該是連接AF或者CF
(1)連結(jié)AF(或連結(jié)CF)
(2)猜想AF=AE(連結(jié)CF的,則猜想CF=AE)
(3)證明:(以AF=AE為例,其他證法參照得分)
∵四邊形ABCD是菱形
∴AB=AD
∴∠ADB=∠ABD
∵∠ABD+∠ABF=180°
∠ADB+∠ADE=180°
∴∠ABF=∠ADE
∵BF = DE
∴△ABF≌△ADE(SAS)
∴AF=AE
考點:菱形的性質(zhì),全等三角形的判定和性質(zhì)
點評:基本的幾何綜合題,考查簡單的線段相等,可以通過全等三角形來證明。
三角形全等的判定定理:SSS、SAS、ASA。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com