【題目】如圖,BA1和CA1分別是△ABC的內角平分線和外角平分線,BA2是∠A1BD的角平分線,CA2是∠A1CD的角平分線,BA3是∠A2BD的角平分線,CA3是∠A2CD的角平分線,若∠A1=α,則∠A2018為_____.
【答案】
【解析】
根據角平分線的定義可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根據三角形的一個外角等于與它不相鄰的兩個內角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解,同理求出∠A2,可以發(fā)現后一個角等于前一個角的,根據此規(guī)律即可得解.
解:∵A1B是∠ABC的平分線,A1C是∠ACD的平分線,
∴∠A1BC=∠ABC,∠A1CD=∠ACD,
又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,
∴(∠A+∠ABC)=∠ABC+∠A1,
∴∠A1=∠A,
∵∠A1=α,
同理理可得∠A2=∠A1=α,
則∠A2018=.
故答案為:.
科目:初中數學 來源: 題型:
【題目】如圖(單位:cm).等腰直角△ABC以2cm/s的速度沿著直線向正方形移動,直到AB與CD重合.設x秒時,三角形與正方形重疊部分的面積為ycm2.
⑴寫出y與x的關系式;
⑵當x=3.5時,y是多少;
⑶當重疊部分的面積是正方形面積的一半時,三角形移動了多少時間;
⑷正方形邊長改為30cm,等腰直角三角形大小不變,移動到AB與EF重合為止.
①x的取值范圍是 ;
②當x滿足 時,y=50;
③寫出當15≤x≤20時,y與x的關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某玩具廠生產一種玩具,本著控制固定成本,降價促銷的原則,使生產的玩具能夠全部售出.據市場調查,若按每個玩具280元銷售時,每月可銷售300個.若銷售單價每降低1元,每月可多售出2個.據統(tǒng)計,每個玩具的固定成本Q(元)與月產銷量y(個)滿足如下關系:
月產銷量y(個) | … | 160 | 200 | 240 | 300 | … |
每個玩具的固定成本Q(元) | … | 60 | 48 | 40 | 32 | … |
(1)寫出月產銷量y(個)與銷售單價x (元)之間的函數關系式;
(2)求每個玩具的固定成本Q(元)與月產銷量y(個)之間的函數關系式;
(3)若每個玩具的固定成本為30元,則它占銷售單價的幾分之幾?
(4)若該廠這種玩具的月產銷量不超過400個,則每個玩具的固定成本至少為多少元?銷售單價最低為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經過第2017次運動后,動點P的坐標是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,O是坐標原點,ABCD的頂點A的坐標為(﹣2,0),點D的坐標為(0,2 ),點B在x軸的正半軸上,點E為線段AD的中點
(1)如圖1,求∠DAO的大小及線段DE的長;
(2)過點E的直線l與x軸交于點F,與射線DC交于點G.連接OE,△OEF′是△OEF關于直線OE對稱的圖形,記直線EF′與射線DC的交點為H,△EHC的面積為3 .
①如圖2,當點G在點H的左側時,求GH,DG的長;
②當點G在點H的右側時,求點F的坐標(直接寫出結果即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某校有一塊長為(5a+b)米,寬為(3a+b)米的長方形空地,中間是邊長(a﹣b)米的正方形草坪,其余為活動場地,學校計劃將活動場地(陰影部分)進行硬化.
(1)用含a,b的代數式表示需要硬化的面積并化簡;
(2)當a=5,b=2時,求需要硬化的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com