【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,兩動(dòng)點(diǎn)D,E分別從點(diǎn)A,點(diǎn)B同時(shí)出發(fā)向點(diǎn)O運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)O停止),運(yùn)動(dòng)速度分別是1個(gè)單位長度/秒和 個(gè)單位長度/秒,設(shè)運(yùn)動(dòng)時(shí)間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過點(diǎn)E,過點(diǎn)E作x軸的平行線,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F.

(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)用含t的代數(shù)式分別表示EF和AF的長;
(3)當(dāng)四邊形ADEF為菱形時(shí),試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時(shí)拋物線的解析式;若不存在,請(qǐng)說明理由.

【答案】
(1)

解:在直線y=﹣ x+2 中,

令y=0可得0=﹣ x+2 ,解得x=2,

令x=0可得y=2

∴A為(2,0),B為(0,2 );


(2)

解:由(1)可知OA=2,OB=2 ,

∴tan∠ABO= = ,

∴∠ABO=30°,

∵運(yùn)動(dòng)時(shí)間為t秒,

∴BE= t,

∵EF∥x軸,

∴在Rt△BEF中,EF=BEtan∠ABO= BE=t,BF=2EF=2t,

在Rt△ABO中,OA=2,OB=2

∴AB=4,

∴AF=4﹣2t;


(3)

解:相似.理由如下:

當(dāng)四邊形ADEF為菱形時(shí),則有EF=AF,

即t=4﹣2t,解得t= ,

∴AF=4﹣2t=4﹣ = ,OE=OB﹣BE=2 × = ,

如圖,過G作GH⊥x軸,交x軸于點(diǎn)H,

則四邊形OEGH為矩形,

∴GH=OE= ,

又EG∥x軸,拋物線的頂點(diǎn)為A,

∴OA=AH=2,

在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=( 2+22=

又AFAB= ×4= ,

∴AFAB=AG2,即 ,且∠FAG=∠GAB,

∴△AFG∽△AGB;


(4)

解:存在,

∵EG∥x軸,

∴∠GFA=∠BAO=60°,

又G點(diǎn)不能在拋物線的對(duì)稱軸上,

∴∠FGA≠90°,

∴當(dāng)△AGF為直角三角形時(shí),則有∠FAG=90°,

又∠FGA=30°,

∴FG=2AF,

∵EF=t,EG=4,

∴FG=4﹣t,且AF=4﹣2t,

∴4﹣t=2(4﹣2t),

解得t= ,

即當(dāng)t的值為 秒時(shí),△AGF為直角三角形,此時(shí)OE=OB﹣BE=2 t=2 × =

∴E點(diǎn)坐標(biāo)為(0, ),

∵拋物線的頂點(diǎn)為A,

∴可設(shè)拋物線解析式為y=a(x﹣2)2,

把E點(diǎn)坐標(biāo)代入可得 =4a,解得a= ,

∴拋物線解析式為y= (x﹣2)2

即y= x2 x+


【解析】(1)在直線y=﹣ x+2 中,分別令y=0和x=0,容易求得A、B兩點(diǎn)坐標(biāo);(2)由OA、OB的長可求得∠ABO=30°,用t可表示出BE,EF,和BF的長,由勾股定理可求得AB的長,從而可用t表示出AF的長;(3)利用菱形的性質(zhì)可求得t的值,則可求得AF=AG的長,可得到 ,可判定△AFG與△AGB相似;(4)若△AGF為直角三角形時(shí),由條件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函數(shù)的對(duì)稱性可得到EG=2OA=4,從而可求出FG,在Rt△AGF中,可得到關(guān)于t的方程,可求得t的值,進(jìn)一步可求得E點(diǎn)坐標(biāo),利用待定系數(shù)法可求得拋物線的解析式.本題為二次函數(shù)的綜合應(yīng)用,涉及知識(shí)點(diǎn)有待定系數(shù)法、三角函數(shù)的定義、相似三角形的判定和性質(zhì)、勾股定理、二次函數(shù)的對(duì)稱性等.在(2)中求得∠ABO=30°是解題的關(guān)鍵,在(3)中求得t的值,表示出AG的長度是解題的關(guān)鍵,在(4)中判斷出∠FAG為直角是解題的突破口.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于非零向量 、 、 下列條件中,不能判定 是平行向量的是(
A. ,
B. +3 = =3
C. =﹣3
D.| |=3| |

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),∠AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將∠O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.
(1)①當(dāng)PC∥QB時(shí),求OQ的長度;
②當(dāng)PC⊥QB時(shí),求OQ的長.
(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由5個(gè)大小相同的小正方體拼成的幾何體如圖所示,則下列說法正確的是( 。

A.主視圖的面積最小
B.左視圖的面積最小
C.俯視圖的面積最小
D.三個(gè)視圖的面積相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計(jì)算:|1﹣ |+3tan30°﹣( -5)0﹣(﹣ 1
(2)解不等式組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將五個(gè)邊長都為2cm的正方形按如圖所示擺放,點(diǎn)A、B、C、D分別是四個(gè)正方形的中心,則圖中四塊陰影面積的和為(
A.2cm2
B.4cm2
C.6cm2
D.8cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場出售一批進(jìn)價(jià)為每個(gè)2元的筆記本,在市場營銷中發(fā)現(xiàn)此商品的日銷售單價(jià)x(元)與日銷售量y(個(gè))之間有如下關(guān)系:
(1)根據(jù)表中數(shù)據(jù)在平面直角坐標(biāo)系中描出實(shí)數(shù)x,y的對(duì)應(yīng)點(diǎn),用平滑曲線連接這些點(diǎn),并觀察所得的圖像,猜測y與x之間的函數(shù)關(guān)系,并求出該函數(shù)關(guān)系式:

x(元)

3

4

5

6

y(個(gè))

20

15

12

10


(2)設(shè)經(jīng)營此筆記本的日銷售利潤為w元,試求出w與x之間的函數(shù)關(guān)系式;
(3)當(dāng)日銷售單價(jià)為8元時(shí),求日銷售利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AC=12,BD=8,P是AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作EF∥BD,與平行四邊形的兩條邊分別交于點(diǎn)E、F.設(shè)CP=x,EF=y,則下列圖像中,能表示y與x的函數(shù)關(guān)系的圖像大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長AB,DC交于點(diǎn)P,若PB=OB,CD=2 ,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案