如圖1,A.D分別在x軸和y軸上,CD∥x軸,BC∥y軸.點(diǎn)P從D點(diǎn)出發(fā),以1cm/s的速度,沿五邊形OABCD的邊勻速運(yùn)動(dòng)一周.記順次連接P、O、D三點(diǎn)所圍成圖形的面積為Scm2,點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.已知S與t之間的函數(shù)關(guān)系如圖2中折線段OEFGHI所示.
(1)求A.B兩點(diǎn)的坐標(biāo);
(2)若直線PD將五邊形OABCD分成面積相等的兩部分,求直線PD的函數(shù)關(guān)系式.

解:(1)在圖1中,連接AD,設(shè)點(diǎn)A的坐標(biāo)為(a,0),

由圖2知,當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí),
DO+OA=6,即DO=6﹣AO=6﹣a,
SAOD=4,
DO•AO=4,即(6﹣a)a=4。
∴a2﹣6a+8=0,解得a=2或a=4。
由圖2知,DO>3,∴AO<3!郺=2。
∴A的坐標(biāo)為(2,0),D點(diǎn)坐標(biāo)為(0,4)。
在圖1中,延長(zhǎng)CB交x軸于M,

由圖2,知AB=11﹣6=5,CB=12﹣11=1。
∴MB=4﹣1=3!。∴OM=2+4=6。
∴B點(diǎn)坐標(biāo)為(6,3)。
(2)顯然點(diǎn)P一定在AB上.設(shè)點(diǎn)P(x,y),連PC.PO,則
S四邊形DPBC=SDPC+SPBC=S五邊形OABCD
=(S矩形OMCD﹣SABM)=9,
×6×(4﹣y)+×1×(6﹣x)=9,即x+6y=12①。
同理,由S四邊形DPAO=9可得2x+y=9②。
聯(lián)立①②,解得x=,y=!郟()。
設(shè)直線PD的函數(shù)關(guān)系式為y=kx+4,將P(,)代入,得=k+4。
解得,k=﹣。
∴直線PD的函數(shù)關(guān)系式為y=﹣x+4。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,點(diǎn)D,E分別在線段AB,AC上,BE,CD相交于點(diǎn)O,AE=AD,要使△ABE≌△ACD,需添加一個(gè)條件是
∠ADC=∠AEB或∠B=∠C或AB=AC或∠BDO=∠CEO
(只要寫一個(gè)條件).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,點(diǎn)D、B分別在∠A的兩邊上,C是∠A內(nèi)一點(diǎn),且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分別為E、F.
求證:CE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)M、E分別在正方形ABCD的邊AB、BC上,以M為圓心,ME的長(zhǎng)為半徑畫弧,交AD邊于點(diǎn)F.當(dāng)
∠EMF=90°時(shí),求證:AF=BM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

老師布置了一道思考題:如圖,點(diǎn)M,N分別在等邊△ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q,求證:∠BQM=60°.
(1)請(qǐng)你完成這道思考題的證明.
(2)做完(1)后,同學(xué)們進(jìn)行了反思,提出了許多問題,如:若將題中的點(diǎn)M,N分別移到BC,CA的延長(zhǎng)線,直線AM,BN交于點(diǎn)Q,是否仍能得到∠BQM=60°?請(qǐng)你作出判斷,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)D、E分別在△ABC的邊AB、AC上,DE∥BC.
(1)若S△ADE=2,S△BCE=7.5,求S△BDE;
(2)若S△BDE=m,S△BCE=n,求S△ABC(用m、n表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案