23、如圖,點D、B分別在∠A的兩邊上,C是∠A內(nèi)一點,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分別為E、F.
求證:CE=CF.
分析:連接AC,證明△ABC≌△ADC,求得AC平分∠EAF,再由角平分線的性質(zhì)即可證明CE=CF.
解答:證明:連接AC,
∵AB=AD,BC=DC,AC=AC,
∴△ABC≌△ADC(SSS).
∴∠DAC=∠BAC.
又CE⊥AD,CF⊥AB,
∴CE=CF(角平分線上的點到角兩邊的距離相等).
點評:本題主要考查平分線的性質(zhì),綜合利用了三角形全等的判定,輔助線的作法是解決問題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點D、E分別在△ABC的邊上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點A,B分別在一次函數(shù)y=x,y=8x的圖象上,其橫坐標分別為a,b (a>0,b>0 ).若直線AB為一次函數(shù)y=kx+m的圖象,則當
b
a
是整數(shù)時,滿足條件的整數(shù)k的值共有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,點M、N分別在正三角形ABC的BC、CA邊上,且BM=CN,AM、BN交于點Q,求∠AQN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,點D、E分別在∠BAC的邊上,連接DC、BE,若∠B=∠C,那么補充下列一個條件后,仍無法判定△ABE≌△ACD的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點A、B分別在直線l1、l2上,過點A作到l2的距離AM,過點B作直線l3∥l1

查看答案和解析>>

同步練習冊答案