【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A(0,4),B(﹣3,0)反比例函數(shù)y=(k為常數(shù),k≠0,x>0)的圖象經(jīng)過點(diǎn)D.
(1)填空:k=_____.
(2)已知在y=的圖象上有一點(diǎn)N,y軸上有一點(diǎn)M,且四邊形ABMN是平行四邊形,求點(diǎn)M的坐標(biāo).
【答案】(1)20(2)M(0,)
【解析】
(1)根據(jù)題意可以求得點(diǎn)D的坐標(biāo),從而可以求得k的值;
(2)根據(jù)題意和平行四邊形的性質(zhì)可以求得點(diǎn)M的坐標(biāo).
(1)∵點(diǎn)A(0,4),B(﹣3,0),
∴OA=4,OB=3,
∴AB=5,
∵四邊形ABCD是菱形,
∴AD=5,
即點(diǎn)D的橫坐標(biāo)是5,
∴點(diǎn)D的坐標(biāo)為(5,4),
∴4=,得k=20,
故答案為:20;
(2)∵四邊形ABMN是平行四邊形,∴AN∥BM,AN=BM,
∴AN可以看作是BM經(jīng)過平移得到的,
首先BM向右平移了3個單位長度,
∴N點(diǎn)的橫坐標(biāo)為3,代入y=,得點(diǎn)N的縱坐標(biāo)為y=,
∴M點(diǎn)的縱坐標(biāo)為﹣4=,
∴M點(diǎn)的坐標(biāo)為(0,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于點(diǎn),與過點(diǎn)平行于軸的直線相交于點(diǎn)(點(diǎn)在第二象限),拋物線的頂點(diǎn)在直線上,且點(diǎn)為的中點(diǎn),對稱軸與軸相交于點(diǎn),平移拋物線,使其經(jīng)過點(diǎn)、,則平移后的拋物線的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊中,,是高所在直線上的一個動點(diǎn),連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,連接.在點(diǎn)運(yùn)動過程中,線段長度的最小值是( )
A.12B.9C.6D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的中,,,動點(diǎn)、分別以、的速度從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)向點(diǎn)移動.
(1)若點(diǎn)從點(diǎn)移動到點(diǎn)停止,點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),問經(jīng)過時(shí)、兩點(diǎn)之間的距離是多少?
(2)若點(diǎn)從點(diǎn)移動到點(diǎn)停止,點(diǎn)隨之停止移動,點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),問經(jīng)過多長時(shí)間、兩點(diǎn)之間的距離是?
(3)若點(diǎn)沿著移動,點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)移動到點(diǎn)停止時(shí),點(diǎn)隨之也停止移動,試探求經(jīng)過多長時(shí)間△的面積為2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CF于點(diǎn)F.
(1)求證:△ABC≌△ADE;
(2)已知BF的長為2,DE的長為6,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,過點(diǎn)D作DF⊥BC于點(diǎn)F,且BD=BC=AD,則∠CDF的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)的圖象經(jīng)過點(diǎn),且與二次函數(shù)的圖象相交于、兩點(diǎn).
(1)求這兩個函數(shù)的表達(dá)式及點(diǎn)的坐標(biāo);
(2)在同一坐標(biāo)系中畫出這兩個函數(shù)的圖象,并根據(jù)圖象回答:當(dāng)取何值時(shí),一次函數(shù)的函數(shù)值小于二次函數(shù)的函數(shù)值;
(3)求△BOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在矩形ABCD中,AB=12cm,BC=8cm.點(diǎn)E、F、G分別從點(diǎn)
A、B、C同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向移動,點(diǎn)E、G的速度均為2cm/s,點(diǎn)F的速
度為4cm/s,當(dāng)點(diǎn)F追上點(diǎn)G(即點(diǎn)F與點(diǎn)G重合)時(shí),三個點(diǎn)隨之停止移動.設(shè)移動開始后
第ts時(shí),△EFG的面積為Scm2.
(1)當(dāng)t=1s時(shí),S的值是多少?
(2)寫出S與t之間的函數(shù)解析式,并指出自變量t的取值范圍;
(3)若點(diǎn)F在矩形的邊BC上移動,當(dāng)t為何值時(shí),以點(diǎn)B、E、F為頂點(diǎn)的三角形與以C、F、G為頂點(diǎn)的三角形相似?請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com