【題目】如圖,在平行四邊形ABCD中,已知AD>AB.
(1)實踐與操作:作∠BAD的平分線交BC于點E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.
【答案】(1)作圖見解析;(2)證明見解析.
【解析】(1)由角平分線的作法容易得出結(jié)果,在AD上截取AF=AB,連接EF;畫出圖形即可;(2)由平行四邊形的性質(zhì)和角平分線得出∠BAE=∠AEB,證出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出結(jié)論.
解:(1)如圖AE就是所要求的角平分線。
(2)四邊形ABEF是菱形;理由如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,∴BE=AB,
由(1)得:AF=AB,
∴BE=AF,又∵BE∥AF,
∴四邊形ABEF是平行四邊形,
∵AF=AB,
∴四邊形ABEF是菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c)
(1)用這樣的兩個三角形構(gòu)造成如圖(2)的圖形,利用這個圖形,證明:a2+b2=c2;
(2)用這樣的兩個三角形可以拼出多種四邊形,畫出周長最大的四邊形;當a=2,b=4時,求這個四邊形的周長;
(3)當a=1,b=2時,將其中一個直角三角形放入平面直角坐標系中(如圖(3)),使直角頂點與原點重合,兩直角邊a,b分別與x軸、y軸重合.
①請在x軸、y軸上找一點C,使△ABC為等腰三角形;(要求:用尺規(guī)畫出所有符合條件的點,并用C1,C2,…,Cn在圖中標出所找的點.只保留作圖痕跡,不寫作法)
②寫出一個滿足條件的在x軸上的點的坐標:_____,寫出一個滿足條件的在y軸上的點坐標:_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把正整數(shù)1,2,3,4,2016排列成如圖所示的形式.
(1)用一個矩形隨意框住4個數(shù),把其中最小的數(shù)記為,另三個數(shù)用含式子表示出來,當被框住的4個數(shù)之和等于418時,值是多少?
(2)被框住的4個數(shù)之和能否等于724?如果能,請求出此時x值;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩同學用兩枚質(zhì)地均勻的骰子作游戲,規(guī)則如下:每人隨機擲兩枚骰子一次(若擲出的兩枚骰子摞在一起,則重擲),點數(shù)和大的獲勝;點數(shù)和相同為平局. 根據(jù)上述規(guī)則,解答下列問題;
(1)隨機擲兩枚骰子一次,用列表法求點數(shù)和為8的概率;
(2)甲先隨機擲兩枚骰子一次,點數(shù)和是7,求乙隨機擲兩枚骰子一次獲勝的概率. (骰子:六個面分別有1、2、3、4、5、6個小圓點的立方塊.點數(shù)和:兩枚骰子朝上的點數(shù)之和)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為開展體育大課間活動,需要購買籃球與足球若干個.已知購買2個籃球和3個足球共需要380元;購買4個籃球和5個足球共需要700元.
(1)求購買一個籃球、一個足球各需多少元;
(2)若體育老師帶了8000元去購買這種籃球與足球共100個.由于數(shù)量較多,店主給出“一律打九折”的優(yōu)惠價,那么他最多能購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某停車場收費標準分為中型汽車和小型汽車兩種,某兩天這個停車場的收費情況如下表:
中型汽車數(shù)量 | 小型汽車數(shù)量 | 收取費用 | |
第一天 | 15輛 | 35輛 | 360元 |
第二天 | 18輛 | 20輛 | 300元 |
(1)中型汽車和小型汽車的停車費每輛多少元?
(2)某天停車場共停車70輛,若收取的停車費用高于500元,則中型汽車至少有多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OD恰為∠BOE的平分線.
(1)圖中∠BOC的補角是 把符合條件的角都填出來);
(2)若∠AOD=145°,求∠AOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系________;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是( 。
A.4 B.3 C.2 D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com