【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為(
A.
B.
C.
D.

【答案】C
【解析】解:∵一次函數(shù)y=ax+b經(jīng)過一、二、四象限, ∴a<0,b>0,
∵反比例函數(shù)y= 的圖象在一、三象限,
∴c>0,
∵a<0,
∴二次函數(shù)y=ax2+bx+c的圖象的開口向下,
∵b>0,
>0,
∵c>0,
∴與y軸的正半軸相交,
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一次函數(shù)的圖象和性質(zhì)的相關(guān)知識,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn),以及對反比例函數(shù)的圖象的理解,了解反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲沿周長為300米的環(huán)形跑道按逆時(shí)針方向跑步,速度為a/秒,與此同時(shí)在甲后面100米的乙也沿該環(huán)形跑道按逆時(shí)針方向跑步,速度為3/秒.

(1)a1,求甲、乙兩人第一次相遇所用的時(shí)間;

(2)a3,甲、乙兩人第一次相遇所用的時(shí)間為80秒,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,求證:∠ACD=∠B;

(2)如圖,在Rt△ABC中,∠C=90°,D、E分別在AC,AB上,且∠ADE=∠B,判斷△ADE的形狀?并說明理由?

(3)如圖,在Rt△ABCRt△DBE中,∠C=90°,∠E=90°,點(diǎn)C,B,E在同一直線上,若AB⊥BD,AB=BD,則CEAC,DE有什么等量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長線于點(diǎn)P,連接AC,BC,PB:PC=1:2.
(1)求證:AC平分∠BAD;
(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說明理由;
(3)若AD=3,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CE是△ABC的外角∠ACD的平分線,若∠B=25°,∠ACE=60°,則∠A=(
A.105°
B.95°
C.85°
D.25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明從家到圖書館看報(bào)然后返回,他離家的距離y與離家的時(shí)間x之間的對應(yīng)關(guān)系如圖所示,如果小明在圖書館看報(bào)30分鐘,那么他離家50分鐘時(shí)離家的距離為 km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為節(jié)約水資源,制定了新的居民用水收費(fèi)標(biāo)準(zhǔn).按照新標(biāo)準(zhǔn),用戶每月繳納的水費(fèi)y(元)與每月用水量x(m3)之間的關(guān)系如圖所示.

(1)求y關(guān)于x的函數(shù)解析式;

(2)若某用戶二、三月份共用水40m3(二月份用水量不超過25m3),繳納水費(fèi)79.8元,則該用戶二、三月份的用水量各是多少m3?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)計(jì)算:(﹣1)2017+2cos45°﹣
(2)化簡: ÷(1﹣ ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D雙曲線上,AD垂直x軸,垂足為A,點(diǎn)C在AD上,CB平行于x軸交曲線于點(diǎn)B,直線AB與y軸交于點(diǎn)F,已知AC:AD=1:3,點(diǎn)C的坐標(biāo)為(2,2).

(1)求該雙曲線的解析式;
(2)求△OFA的面積.

查看答案和解析>>

同步練習(xí)冊答案