【題目】已知點(diǎn)O是AB上的一點(diǎn),∠COE=90°,OF平分∠AOE.
(1)如圖1,當(dāng)點(diǎn)C,E,F在直線AB的同一側(cè)時(shí),若∠AOC=40°,求∠BOE和∠COF的度數(shù);
(2)在(1)的條件下,∠BOE和∠COF有什么數(shù)量關(guān)系?請直接寫出結(jié)論,不必說明理由;
(3)如圖2,當(dāng)點(diǎn)C,E,F分別在直線AB的兩側(cè)時(shí),若∠AOC=β,那么(2)中∠BOE和∠COF的數(shù)量關(guān)系是否仍然成立?請寫出結(jié)論,并說明理由.
【答案】(1) ∠COF=25°, ∠BOE=50°;(2) ∠BOE=2∠COF;(3) ∠BOE=2∠COF,理由見解析
【解析】
(1)求出∠BOE和∠COF的度數(shù)即可判斷;
(2)由(1)即可求解;
(3)結(jié)論:∠BOE=2∠COF.根據(jù)角的和差定義即可解決問題.
解:(1)∵∠COE=90°,∠AOC=40°,
∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣40°﹣90°=50°,
∠AOE=∠AOC+∠COE=40°+90°=130°,
∵OF平分∠AOE,
∴∠EOF=∠AOE=×130°=65°,
∴∠COF=∠COE﹣∠EOF=90°﹣65°=25°;
(2)∠BOE=2∠COF.
(3)∠BOE=2∠COF.
理由如下:∵∠COE=90°,∠AOC=β,
∴∠AOE=∠COE﹣∠AOC=90°﹣β,
∴∠BOE=180°﹣∠AOE=180°﹣(90°﹣β)=90°+β,
∵OF平分∠AOE,
∴∠AOF=∠AOE=(90°﹣β)=45°﹣β,
∴∠COF=β+(45°﹣β)=45°+β,
∴2∠COF=2(45°+β)=90°+β,
∴∠BOE=2∠COF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)為正方形的中心。
(1)將線段繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn),點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),連接, , ,請依題意補(bǔ)全圖1;
(2)根據(jù)圖1中補(bǔ)全的圖形,猜想并證明與的關(guān)系;
(3)如圖2,點(diǎn)是中點(diǎn),△是等腰直角三角形, 是的中點(diǎn), , , ,△繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)角度,請直接寫出旋轉(zhuǎn)過程中的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“又甜又脆”水果店現(xiàn)從批發(fā)市場買進(jìn)6箱蘋果,買進(jìn)價(jià)每箱40元,以每箱為準(zhǔn),稱重記示如下(超過為正,不足為負(fù),單位:):,,0,0.3, ,2.
(1)問這6箱蘋果的總重量是多少?
(2)在出售這批蘋果時(shí),有的蘋果爛掉(不能出售),若出售價(jià)為8元/,賣完這批蘋果該水果店可可贏利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3cm,BC=5cm.點(diǎn)P從A點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng),速度為1cm/s.連結(jié)PO并延長交BC于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t(0<t<5).
(1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?
(2)設(shè)四邊形OQCD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使點(diǎn)O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知A(2,2)、B(4,0),若在x軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB:y=x+2與x軸、y軸分別交于A,B兩點(diǎn),C是第一象限內(nèi)直線AB上一點(diǎn),過點(diǎn)C作CD⊥x軸于點(diǎn)D,且CD的長為,P是x軸上的動(dòng)點(diǎn),N是直線AB上的動(dòng)點(diǎn).
(1)直接寫出A,B兩點(diǎn)的坐標(biāo);
(2)如圖①,若點(diǎn)M的坐標(biāo)為(0,),是否存在這樣的P點(diǎn).使以O,P,M,N為頂點(diǎn)的四邊形是平行四邊形?若有在,請求出P點(diǎn)坐標(biāo);若不存在,請說明理由.
(3)如圖②,將直線AB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)交y軸于點(diǎn)F,交x軸于點(diǎn)E,若旋轉(zhuǎn)角即∠ACE=45°,求△BFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,∠ACD=3∠BCD,E是斜邊AB的中點(diǎn),則∠ECD的度數(shù)為__________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)把下列各數(shù)分別填在相應(yīng)的集合里:
, , ,,0, ,……
正有理數(shù)集合:{ …}
整數(shù)集合:{ …}
分?jǐn)?shù)集合:{ …}
(2)在下面的數(shù)軸上表示下列各數(shù),并按照從小到大的順序用“<”號連接起來
,,, ,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測得該塔的塔頂B的仰角為76°.
求:(1)坡頂A到地面PO的距離;
(2)古塔BC的高度(結(jié)果精確到1米).
(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com