【題目】為了深入貫徹黨的十八大精神,我省某中學(xué)為了深入學(xué)習(xí)社會主義核心價值觀,特對本校部分學(xué)生(隨機(jī)抽樣)進(jìn)行了一次相關(guān)知識的測試(成績分為A,B,C,D,E五個組,x表示測試成績),通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題.
A組:90≤x≤100 B組:80≤x<90 C組:70≤x<80 D組:60≤x<70 E組:x<60
(1)參加調(diào)查測試的學(xué)生共有人;請將兩幅統(tǒng)計圖補(bǔ)充完整.
(2)本次調(diào)查測試成績的中位數(shù)落在組內(nèi).
(3)本次調(diào)查測試成績在80分以上(含80分)為優(yōu)秀,該中學(xué)共有3000人,請估計全校測試成績?yōu)閮?yōu)秀的學(xué)生有多少人?
【答案】
(1)400
(2)B
(3)
解:3000×(25%+30%)=1650人.
答:估計全校測試成績?yōu)閮?yōu)秀的學(xué)生有1650人.
【解析】解:(1)設(shè)參加調(diào)查測試的學(xué)生共有x人.由題意 =15%,解得x=400,故答案為400.B組人數(shù)為:400×30%=120.A組所占百分比為: ×100%=25%,C組所占百分比為: ×100%=20%.統(tǒng)計圖補(bǔ)充如下,
⑵∵一共有400人,其中A組有100人,B組有120人,C組有80人,D組有60人,E組有40人,∴最中間的兩個數(shù)在落在B組,∴中位數(shù)在B組.故答案為B.
(1)根據(jù)D組人數(shù)是60,所占的百分比是15%,據(jù)此即可求得總?cè)藬?shù),用總?cè)藬?shù)乘以B組所占百分比,求出B組人數(shù)完成條形圖.根據(jù)頻率=頻數(shù)÷數(shù)據(jù)總數(shù)求出A、C兩組所占百分比,完成扇形圖;(2)利用中位數(shù)的定義,就是大小處于中間位置的數(shù)即可作判斷.(3)利用總?cè)藬?shù)乘以對應(yīng)的百分比即可求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文化,源遠(yuǎn)流長,在文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”,某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個不完整的統(tǒng)計圖,請結(jié)合圖中信息解決下列問題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是部,中位數(shù)是部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為度.
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來閱讀,則他們選中同一名著的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y= 在第一象限的圖象如圖所示,過點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)y= 的圖象于點(diǎn)M,△AOM的面積為3.
(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點(diǎn)在反比例函數(shù)y= 的圖象上,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OB=3,BC是⊙O的弦,∠ABC的平分線交⊙O于點(diǎn)D,連接OD,若∠BAC=20°,則 的長等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),直線y= x+1與拋物線y= x2+bx+c交于A,B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為4.
(1)求拋物線的解析式;
(2)拋物線y= x2+bx+c 交x軸正半軸于點(diǎn)C,橫坐標(biāo)為t的點(diǎn)P在第四象限的拋物線上,過點(diǎn)P作AB的垂線交x軸于點(diǎn)E,點(diǎn)Q為垂足,設(shè)CE的長為d,求d與t之間的函數(shù)關(guān)系式,直接寫出自變量t的取值范圍:
(3)在(2)的條件下,過點(diǎn)B作y軸的平行線交x軸于點(diǎn)D,連接DQ.當(dāng)∠AQD=3∠PQD時,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)E是線段BC上的一個動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解學(xué)生在家使用電腦的情況(分為“總是、較多、較少、不用”四種情況),隨機(jī)在八、九年級各抽取相同數(shù)量的學(xué)生進(jìn)行調(diào)查,繪制成部分統(tǒng)計圖如下所示.請根據(jù)圖中信息,回答下列問題:
(1)九年級一共抽查了名學(xué)生,圖中的a= , “總是”對應(yīng)的圓心角為度.
(2)根據(jù)提供的信息,補(bǔ)全條形統(tǒng)計圖.
(3)若該校九年級共有900名學(xué)生,請你統(tǒng)計其中使用電腦情況為“較少”的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和正方形AEFG有公共頂點(diǎn)A,將正方形AEFG繞點(diǎn)A旋轉(zhuǎn).
(1)發(fā)現(xiàn):如圖1,當(dāng)E點(diǎn)旋轉(zhuǎn)到DA的延長線上時,△ABE與△ADG的面積關(guān)系是:;
(2)引申:當(dāng)正方形AEFG旋轉(zhuǎn)任意一個角度時,△ABE與△ADG的面積關(guān)系是:;
(3)如圖3,四邊形ABMN、四邊形DEAC、四邊形BFGC均為正方形,則S△ABC、S△AEN、S△BMF、S△DCG的關(guān)系是;
(4)運(yùn)用:某小區(qū)中有一塊空地,要在其中建三個正方形健身場所(如圖3),其余空地修成草坪.若已知其中一個正方形的邊長為5m,另一個正方形的邊長為4m,則草坪的最大面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com