已知拋物線y=x2+3x與x軸交于A、B兩點,在x軸上方的拋物線上存在一點P,使△PAB的面積等于3,
(1)求A、B兩點的坐標(biāo);
(2)求出點P的坐標(biāo).
(1)令y=0,則x2+3x=0.
所以x(x+3)=0,
解得x1=0,x2=-3,
故A(0,0),B(-3,0);

(2)設(shè)P(x,x2+3x)(-3<x<0).則
1
2
AB•|x2+3x|=3,即
1
2
×3×|x2+3x|=3,
所以x2+3x-2=0,
解得x=
-3+
17
2
或x=
-3-
17
2
(不合題意,舍去).
故點P的坐標(biāo)是(
-3+
17
2
,2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知過點(
3
2
,-
7
4
)的直線y=kx+b與x軸、y軸的交點分別為A、B,且經(jīng)過第一、三、四象限,它與拋物線y=x2-4x+3只有一個公共點.
(1)求k的值;
(2)設(shè)拋物線的頂點為P,求點P到直線AB的距離d.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,己知二次函數(shù)y=-
1
2
x2+4x-6的圖象與x軸、y軸分別交于點A、B兩點.
(1)求A,B兩點的坐標(biāo);
(2)設(shè)該二次函數(shù)的對稱軸與x軸交于點C,連結(jié)BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,拋物線y=x2-2x-3交x軸于A、B,交y軸于C,若在此拋物線上存在P,使△PAC的內(nèi)心在x軸上,則點P的坐標(biāo)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x-2-1012
y04664
從上表可知,下列說法中正確的是______.(填寫序號)
①拋物線與x軸的一個交點為(3,0);②函數(shù)y=ax2+bx+c的最大值為6;
③拋物線的對稱軸是直線x=
1
2
;  、茉趯ΨQ軸左側(cè),y隨x增大而增大.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知b,c為整數(shù),方程5x2+bx+c=0的兩根都大于-1且小于0.求b和c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)y=-ax2+2ax+m的部分圖象如圖所示,則一元二次方程ax2-2ax-m=0的根為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y=x2+bx+c的部分圖象如圖所示,則它與x軸的另一個交點是( 。
A.(2,0)B.(3,0)C.(4,0)D.(5,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx-c的圖象與x軸兩交點的坐標(biāo)分別為(m,0),(-2m,0)(m≠0).
(I)證明:c=2b2
(2)若該函數(shù)圖象的對稱軸為直線x=-1,試求二次函數(shù)的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案