求證平行四邊形一條對(duì)角線的兩個(gè)端點(diǎn)到另一條對(duì)角線的距離相等.

答案:
解析:

證明略


提示:

利用兩三角形同底等積則高相等(要畫圖寫已知求證)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

29、先閱讀理解兩條正確結(jié)論,并用這兩條結(jié)論完成應(yīng)用與探究.閱讀:
正確結(jié)論1.在圖甲△ABC中,如果D是AB的中點(diǎn),DE∥BC交AC于點(diǎn)E,那么E也是AC的中點(diǎn),及DE是中位線.
正確結(jié)論2.在圖乙梯形ABCD中,如果E為腰AB的中點(diǎn)且EF∥AD∥BC.那么F也是CD的中點(diǎn),及EF是中位線.
應(yīng)用:如圖丙,已知,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB′+DD′.
探究:如圖丁,若直線MN向上移動(dòng),使點(diǎn)C在直線一側(cè),A、B、D三點(diǎn)在直線另一側(cè),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對(duì)結(jié)論進(jìn)行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知,如圖甲,MN是平行四邊形ABCD外的一條直線,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′為垂足.求證:AA′+CC′=BB''+DD′.
(2)若直線MN向上移動(dòng),使點(diǎn)C在直線一側(cè),A、B、D三點(diǎn)在直線另一側(cè)(如圖乙),則垂線段AA′、BB′、CC′、DD′之間存在什么關(guān)系?先對(duì)結(jié)論進(jìn)行猜想,然后加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下面是小明作業(yè)中對(duì)一道題的解答以及老師的批閱
如圖所示,?ABCD中,對(duì)角線AC,BD相交于O,OE⊥AD,OF⊥BC,垂足分別是E,F(xiàn).
求證:OE=OF.
解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,OA=OC.
∴∠3=∠4.(兩直線平行,內(nèi)錯(cuò)角相等)
∴∠1=∠2(對(duì)頂角相等)
∴△AOE≌△COF,
∴OE=OF.
小明認(rèn)為自己正確說(shuō)明了問(wèn)題,但老師卻在答案中劃了一條線,并打了?.請(qǐng)你指出其中的問(wèn)題,并給出正確解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中華題王 數(shù)學(xué) 九年級(jí)上 (北師大版) 北師大版 題型:059

四邊形是大家最熟悉的圖形之一,我們已經(jīng)發(fā)現(xiàn)了它的許多性質(zhì),只要善于觀察、樂(lè)于探索,我們會(huì)發(fā)現(xiàn)更多的結(jié)論.問(wèn)題的提出:四邊形一條對(duì)角線上任意一點(diǎn)與另外兩個(gè)頂點(diǎn)的連線,將四邊形分成四個(gè)小三角形,其中相對(duì)的兩對(duì)三角形的面積之積有何關(guān)系?你能探索出結(jié)論嗎?

(1)為了更直觀的發(fā)現(xiàn)問(wèn)題,我們不妨先在特殊的四邊形——平行四邊形中,研究這個(gè)問(wèn)題:已知:在ABCD中,O是對(duì)角線BD上任意一點(diǎn)(如圖①)求證:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索過(guò)程作參照,你一定能類比出一般四邊形(如圖②)中,解決問(wèn)題的辦法了吧!填寫結(jié)論并寫出證明過(guò)程.

已知:在四邊形ABCD中,O是對(duì)角線BD上任意一點(diǎn).(如圖②)

求證:________.

證明:

(3)在三角形中(如圖③),你能否歸納出類似的結(jié)論?若能,用文字?jǐn)⑹瞿銡w納出的結(jié)論,并寫出已知、求證和證明過(guò)程;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:三點(diǎn)一測(cè)叢書九年級(jí)數(shù)學(xué)上 題型:044

對(duì)四邊形的觀察與探索

  四邊形是大家最熟悉的圖形之一,我們已經(jīng)發(fā)現(xiàn)了它的許多性質(zhì).只要善于觀察、樂(lè)于探索,我們還會(huì)發(fā)現(xiàn)更多的結(jié)論.

  問(wèn)題的提出:四邊形一條對(duì)角線上任意一點(diǎn)與另外兩個(gè)頂點(diǎn)的連線,將四邊形分成四個(gè)三角形,其中相對(duì)的兩對(duì)三角形的面積之積有何關(guān)系?你能探索出結(jié)論嗎?

(1)為了更直觀的發(fā)現(xiàn)問(wèn)題,我們不妨先在特殊的四邊形--平行四邊形中,研究這個(gè)問(wèn)題:

已知:在ABCD中,O是對(duì)角線BD上任意一點(diǎn)(如圖),求證:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索過(guò)程作參照,你一定能類比出在一般四邊形(如圖)中,解決問(wèn)題的辦法了吧!填寫結(jié)論并寫出證明過(guò)程.

已知:在四邊形ABCD中,O是對(duì)角線BD上任意一點(diǎn)(如圖)

求證:________________

(3)在三角形中(如圖),你能否歸納出類似的結(jié)論?若能,用文字?jǐn)⑹瞿銡w納出的結(jié)論,并寫出已知、求證和證明過(guò)程;若不能,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案