【題目】如圖,正方形ABCD中,點G為對角線AC上一點,AG=AB.∠CAE=15°且AE=AC,連接GE.將線段AE繞點A逆時針旋轉(zhuǎn)得到線段AF,使DF=GE,則∠CAF的度數(shù)為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連結(jié)AG、CF.下列結(jié)論:
①△ABG≌△AFG;② BG=GC;③ AG∥CF;④∠GAE=45°.
則正確結(jié)論的個數(shù)有( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是等邊三角形,點在邊上.
(1)如圖1,當(dāng)點在邊上時,求證;
(2)如圖2,當(dāng)點在內(nèi)部時,猜想和數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點在外部時,于點,過點作,交線段的延長線于點,,.求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入冬季,空調(diào)再次迎來銷售旺季,某商場用元購進(jìn)一批空調(diào),該空調(diào)供不應(yīng)求,商家又用元購進(jìn)第二批這種空調(diào),所購數(shù)量比第一批購進(jìn)數(shù)量多臺,但單價是第一批的倍.
(1)該商場購進(jìn)第一批空調(diào)的單價多少元?
(2)若兩批空調(diào)按相同的標(biāo)價出售,春節(jié)將近,還剩下臺空調(diào)未出售,為減少庫存回籠資金,商家決定最后的臺空調(diào)按九折出售,如果兩批空調(diào)全部售完利潤率不低于(不考慮其他因素),那么每臺空調(diào)的標(biāo)價至少多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,在邊長為1的正方形的邊上有—動點沿正方形運(yùn)動一周,則的縱坐標(biāo)與點走過的路程之間的函數(shù)關(guān)系用圖象表示大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線的頂點坐標(biāo)為(2,0),且經(jīng)過點(4,1),如圖,直線y=x與拋物線交于A、B兩點,直線l為y=﹣1.
(1)求拋物線的解析式;
(2)在l上是否存在一點P,使PA+PB取得最小值?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
(3)知F(x0,y0)為平面內(nèi)一定點,M(m,n)為拋物線上一動點,且點M到直線l的距離與點M到點F的距離總是相等,求定點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯誤的是( )
A. 圖象的對稱軸是直線x=﹣1 B. 當(dāng)x>﹣1時,y隨x的增大而減小
C. 當(dāng)﹣3<x<1時,y<0 D. 一元二次方程ax2+bx+c=0的兩個根是﹣3,1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=56°,OC平分∠AOB,如果射線OA上的點E滿足△OCE是等腰三角形,那么∠OEC的度數(shù)為________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com