【題目】閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(小)值。如對于任意正實數(shù)、x,可作變形:x+=()2+2,因為()20,所以x+2(當x=時取等號)

記函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當x=時,該函數(shù)有最小值為2

直接應(yīng)用: 已知函數(shù)y1=x(x>0)與函數(shù)y2 = (x>0),則當x= 時,y1+y2取得最小值為

變形應(yīng)用: 已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求 的最小值,并指出取得該最小值時相應(yīng)的x的值

實際應(yīng)用:汽車的經(jīng)濟時速是指汽車最省油的行駛速度。某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油(+)升。若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.

、求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);

、求該汽車的經(jīng)濟時速及經(jīng)濟時速的百公里耗油量(結(jié)果保留小數(shù)點后一位).

【答案】(1)、3;6;(2)、x=1;(3)、、(70x110);、11.1升.

【解析】

試題分析:(1)、當x=時有最小值;(2)、首先將化成x+1+,然后根據(jù)題意進行計算;(3)、根據(jù)題意列出函數(shù)解析式,然后進行求解.

試題解析:(1)、根據(jù)題意得:x= x>0 x=3 最小值為6.

(2)、當x=1時,的最小值為4

(3)、 (70x110)

、由題知:2,即y10,此時=5,x=90

百公里耗油量為100×)=11.1升.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】李欣同學下午530放學離校,此刻時鐘上時針與分針的夾角大小應(yīng)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(列方程計算)某數(shù)的5倍減去4,比該數(shù)大4,求這個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.

(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;

(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;

(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年是揚州城慶2500周年,東關(guān)歷史街區(qū)某商鋪用3000元批發(fā)某種城慶旅游紀念品銷售,由于銷售狀況良好,該商鋪又籌集9000元資金再次批進該種紀念品,但這次的進價比第一次的進價提高了20%,購進的紀念品數(shù)量是第一次的2倍還多300個,如果商鋪按9元/個的價格出售,當大部分紀念品售出后,余下的600個按售價的8折售完.

(1)該種紀念品第一次的進貨單價是多少元?

(2)該商鋪銷售這種紀念品共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大腸桿菌每20分鐘便由一個分裂成2個,經(jīng)過2小時后,這種大腸桿菌由1個分裂成_____個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=x2+2的頂點坐標是( )
A.(1,﹣2)
B.(1,2)
C.(0,﹣2)
D.(0,2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一項工程,甲、乙兩公司合做,12天可以完成,共需付工費102000元;如果甲、乙兩公司單獨完成此項公程,乙公司所用時間甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元。

(1)甲、乙公司單獨完成此項工程,各需多少天?

(2)若讓一個公司單獨完成這項工程,哪個公司施工費較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,AE垂直x軸于E點,已知,OE=3AE,點B的坐標為(m,)。

(1)求反比例函數(shù)的解析式。

(2)求一次函數(shù)的解析式。

(3)在y軸上存在一點P,使得PDC與ODC相似,請你求出P點的坐標。

查看答案和解析>>

同步練習冊答案