【題目】如圖:已知點A、B是反比例函數(shù)y=﹣上在第二象限內(nèi)的分支上的兩個點,點C(0,3),且△ABC滿足AC=BC,∠ACB=90°,則線段AB的長為__

【答案】

【解析】過點AADy軸于點D,過點BBEy軸于點E過點AAFBE軸于點F,如圖所示.

∵∠ACB=90°,

∴∠ACD+BCE=90°,

又∵ADy軸,BEy軸,

∴∠ACD+CAD=90°,BCE+CBE=90°,

∴∠ACD=CBE,BCE=CAD

ACDCBE中,由,

ACDCBE(ASA).

設(shè)點B的坐標(biāo)為(m,﹣)(m<0),則E(0,﹣),點D(0,3﹣m),點A(﹣﹣3,3﹣m),

∵點A(﹣﹣3,3﹣m)在反比例函數(shù)y=﹣上,

,解得:m=3m=2(舍去).

∴點A的坐標(biāo)為(﹣1,6),B的坐標(biāo)為(﹣3,2),F的坐標(biāo)為(﹣1,2),

∴BF=2,AF=4,

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C的中點,CEAB于點E,BDCE于點F.

(1)求證:CF=BF;

(2)CD=5,AC=12,求⊙O的半徑和CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為等邊三角形,,相交于點,于點,,

(1)求證:

(2)求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)水果店張阿姨以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價銷售.

1)若將這種水果每斤的售價降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過點A2,4)和B(﹣1,﹣5)兩點.

1)求出該一次函數(shù)的表達式;

2)畫出該一次函數(shù)的圖象;

3)判斷(﹣5,﹣4)是否在這個函數(shù)的圖象上?

4)求出該函數(shù)圖象與坐標(biāo)軸圍成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,在A,B兩地間有一車站C,甲汽車從A地出發(fā)經(jīng)C站勻速駛往B地,乙汽車從B地出發(fā)經(jīng)C站勻速駛往A地,兩車速度相同.如圖(2)是兩輛汽車行駛時離C站的路程y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系的圖象.

1)填空:a=    km,b=    hAB兩地的距離為    km;

2)求線段PMMN所表示的yx之間的函數(shù)表達式(自變量取值范圍不用寫);

3)求行駛時間x滿足什么條件時,甲、乙兩車距離車站C的路程之和最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是

A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一均勻硬幣10次都可能正面朝上

C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50

D. 通過拋一均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國派遣三艘海監(jiān)船在南海保護中國漁民不受菲律賓的侵犯.在雷達顯示圖上,標(biāo)明了三艘海監(jiān)船的坐標(biāo)為、,(單位:海里)三艘海監(jiān)船安裝有相同的探測雷達,雷達的有效探測范圍是半徑為的圓形區(qū)域(只考慮在海平面上的探測).

(1)若在三艘海監(jiān)船組成的區(qū)域內(nèi)沒有探測盲點,則雷達的有效探測半徑至少為________海里;

(2)某時刻海面上出現(xiàn)一艘菲律賓海警船,在海監(jiān)船測得點位于南偏東方向上,同時在海監(jiān)船測得位于北偏東方向上,海警船正以每小時海里的速度向正西方向移動,我海監(jiān)船立刻向北偏東方向運動進行攔截,問我海監(jiān)船至少以多少速度才能在此方向上攔截到菲律賓海警船?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某日,正在我國南海海域作業(yè)的一艘大型漁船突然發(fā)生險情,相關(guān)部門接到求救信號后,立即調(diào)遣一架直升飛機和一艘剛在南海巡航的漁政船前往救援.當(dāng)飛機到達距離海面3000米的高空C處,測得A處漁政船的俯角為60°,測得B處發(fā)生險情漁船的俯角為30°,請問:此時漁政船和漁船相距多遠?(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案