如圖,在平面直角坐標(biāo)系xOy中,經(jīng)過點(diǎn)A,C,B的拋物線的一部分與經(jīng)過點(diǎn)A,E,B的拋物線的一部分組合成一條封閉曲線,我們把這條封閉曲線稱為“雙拋物線”.已知P為AB中精英家教網(wǎng)點(diǎn),且P(-1,0),C(
2
-1,1),E(0,-3),S△CPA=1.
(1)試求“雙拋物線”中經(jīng)過點(diǎn)A,E,B的拋物線的解析式;
(2)若點(diǎn)F在“雙拋物線”上,且S△FAP=S△CAP,請(qǐng)你直接寫出點(diǎn)F的坐標(biāo);
(3)如果一條直線與“雙拋物線”只有一個(gè)交點(diǎn),那么這條直線叫做“雙拋物線”的切線.若過點(diǎn)E與x軸平行的直線與“雙拋物線”交于點(diǎn)G,求經(jīng)過點(diǎn)G的“雙拋物線”切線的解析式.
分析:(1)已知了△APC的面積和點(diǎn)C的縱坐標(biāo),即可得到AP的長(zhǎng),進(jìn)而可根據(jù)P點(diǎn)坐標(biāo),求出A、B的坐標(biāo),從而利用待定系數(shù)法求得過A、E、B三點(diǎn)的拋物線解析式.
(2)顯然C點(diǎn)關(guān)于雙拋物線的對(duì)稱軸的對(duì)稱點(diǎn)符合點(diǎn)F的要求,其坐標(biāo)易求得;若F、C的縱坐標(biāo)互為想法是,則F點(diǎn)的縱坐標(biāo)為-1,將其代入過A、E、B三點(diǎn)的拋物線的解析式中,即可求得另兩個(gè)點(diǎn)F的坐標(biāo).
(3)由于E、G關(guān)于拋物線的對(duì)稱軸對(duì)稱,易求得G點(diǎn)的坐標(biāo),設(shè)出經(jīng)過點(diǎn)G的切線的解析式,將點(diǎn)G的坐標(biāo)代入該直線的解析式中,即可消去一個(gè)未知數(shù),然后聯(lián)立(1)所得拋物線的解析式,由于兩個(gè)函數(shù)只有一個(gè)交點(diǎn),那么所得方程的根的判別式△=0,可據(jù)此求出該切線的解析式.
解答:解:(1)∵S△ACP=
1
2
AP•|yC|=1,由題意知:|yC|=1,
∴AP=2,即A(-3,0);
由于A、B關(guān)于點(diǎn)P對(duì)稱,則B(1,0);
設(shè)經(jīng)過A、E、B的拋物線的解析式為:y=a(x+3)(x-1),則有:
a(0+3)(0-1)=-3,a=1,
故所求拋物線的解析式為:y=(x+3)(x-1)=x2+2x-3.

(2)由于△PAC和△PAF同底,若S△FAP=S△CAP,那么C、F的縱坐標(biāo)的絕對(duì)值相同;
當(dāng)F點(diǎn)的縱坐標(biāo)為1時(shí),C、F關(guān)于直線x=-1對(duì)稱,則F(-
2
-1,1);
當(dāng)F點(diǎn)縱坐標(biāo)為-1時(shí),代入y=x2+2x-3中,得:x2+2x-3=-1,
解得x=-1±
3
;
故F(-1+
3
,-1)或(-1-
3
,-1);
綜上可知:存在符合條件的F點(diǎn),且坐標(biāo)為:F1(-
2
-1,1)、F2(-1+
3
,-1)、F3(-1-
3
,-1).

(3)由于EG∥x軸,則E、G關(guān)于直線x=-1對(duì)稱,故G(-2,-3);
設(shè)經(jīng)過點(diǎn)G的“雙拋物線”的切線的解析式為:y=kx+b,
則有:-2k+b=-3,b=2k-3;
∴y=kx+2k-3;
由于G點(diǎn)同時(shí)在切線和拋物線的圖象上,
則有:x2+2x-3=kx+2k-3,
即x2+(2-k)x-2k=0,
由于兩個(gè)函數(shù)只有一個(gè)交點(diǎn),則:
△=(2-k)2+8k=0,
解得k=-2;
故所求切線的解析式為:y=-2x-7.
點(diǎn)評(píng):此題主要考查了三角形面積的計(jì)算方法、二次函數(shù)的對(duì)稱性、二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)坐標(biāo)的求法以及根的判別式等重要知識(shí),涉及的知識(shí)面廣,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案