如圖,已知拋物線y=x2﹣x﹣3與x軸的交點為A、D(A在D的右側(cè)),與y軸的交點為C.
(1)直接寫出A、D、C三點的坐標(biāo);
(2)若點M在拋物線上,使得△MAD的面積與△CAD的面積相等,求點M的坐標(biāo);
(3)設(shè)點C關(guān)于拋物線對稱軸的對稱點為B,在拋物線上是否存在點P,使得以A、B、C、P四點為頂點的四邊形為梯形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
解:(1)∵y=x2﹣x﹣3,∴當(dāng)y=0時,x2﹣x﹣3=0,
解得x1=﹣2,x2=4.當(dāng)x=0,y=﹣3.
∴A點坐標(biāo)為(4,0),D點坐標(biāo)為(﹣2,0),C點坐標(biāo)為(0,﹣3);
(2)∵y=x2﹣x﹣3,∴對稱軸為直線x==1.
∵AD在x軸上,點M在拋物線上,
∴當(dāng)△MAD的面積與△CAD的面積相等時,分兩種情況:
①點M在x軸下方時,根據(jù)拋物線的對稱性,可知點M與點C關(guān)于直線x=1對稱,
∵C點坐標(biāo)為(0,﹣3),∴M點坐標(biāo)為(2,﹣3);
②點M在x軸上方時,根據(jù)三角形的等面積法,可知M點到x軸的距離等于點C到x軸的距離3.當(dāng)y=4時,x2﹣x﹣3=3,解得x1=1+,x2=1﹣,
∴M點坐標(biāo)為(1+,3)或(1﹣,3).
綜上所述,所求M點坐標(biāo)為(2,﹣3)或(1+,3)或(1﹣,3);
(3)結(jié)論:存在.
如圖所示,在拋物線上有兩個點P滿足題意:
①若BC∥AP1,此時梯形為ABCP1.
由點C關(guān)于拋物線對稱軸的對稱點為B,可知BC∥x軸,則P1與D點重合,
∴P1(﹣2,0).∵P1A=6,BC=2,∴P1A≠BC,∴四邊形ABCP1為梯形;
②若AB∥CP2,此時梯形為ABCP2.
∵A點坐標(biāo)為(4,0),B點坐標(biāo)為(2,﹣3),∴直線AB的解析式為y=x﹣6,
∴可設(shè)直線CP2的解析式為y=x+n,將C點坐標(biāo)(0,﹣3)代入,得b=﹣3,
∴直線CP2的解析式為y=x﹣3.∵點P2在拋物線y=x2﹣x﹣3上,
∴x2﹣x﹣3=x﹣3,化簡得:x2﹣6x=0,解得x1=0(舍去),x2=6,
∴點P2橫坐標(biāo)為6,代入直線CP2解析式求得縱坐標(biāo)為6,∴P2(6,6).
∵AB∥CP2,AB≠CP2,∴四邊形ABCP2為梯形.
綜上所述,在拋物線上存在一點P,使得以點A、B、C、P四點為頂點所構(gòu)成的四邊形為梯形;點P的坐標(biāo)為(﹣2,0)或(6,6).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
四邊形ABCD中,AC、BD相交于點O,不能判定它是平行四邊形的條件是………( )
A.AB∥CD,AD∥BC B.AO=CO,BO=DO
C.AB∥CD,AD=BC D.AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象相交于點A(2,5)和點B,與y軸相交于點C(0,7).
(1)求這兩個函數(shù)的解析式;
(2)當(dāng)x取何值時,y1<y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平行四邊形ABCD中,E是AD邊上的中點,連接BE,并延長BE交CD的延長線于點F.
(1)證明:FD=AB;
(2)當(dāng)平行四邊形ABCD的面積為8時,求△FED的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com