【題目】重慶某油脂公司生產銷售菜籽油、花生油兩種食用植物油.
(1)已知花生的出油率為56%,是菜籽的1.4倍,現(xiàn)有菜籽、花生共100噸,若想得到至少52噸植物油,則其中的菜籽至多有多少噸?
(2)在去年的銷售中,菜籽油、花生油的售價分別為20元/升,30元/升,且銷量相同,今年由于花生原材料價格上漲,花生油的售價比去年提高了a%,菜籽油的售價不變,總銷量比去年降低a%,且菜籽油、花生油的銷量均占今年總銷量的,這樣,預計今年的銷售總額比去年下降a%,求a的值.
【答案】(1)菜籽至多有25噸;(2)25
【解析】試題分析:(1)設菜籽有x噸,則花生有(100﹣x)噸,根據(jù)至少得到52噸植物油,即可列出不等式,解之就可求得x的取值范圍,取其內的最大正整數(shù)即可;
(2)設y=a%,根據(jù)銷售總額=菜籽油的銷售額+花生油的銷售額,結合今年的銷售總額比去年下降a%即可列出關于y的一元二次方程,解之即可得出結論.
試題解析:解:(1)設菜籽有x噸,則花生有(100﹣x)噸,根據(jù)題意得:
56%(100﹣x)+56%x÷1.4≥52,解得:x≤25.
答:菜籽至多有25噸.
(2)設y=a%,根據(jù)題意得:[20+30(1+y)](1﹣y)=(20+30)(1﹣y),整理得:4y2﹣y=0,解得:y=0.25或y=0(舍去),∴a%=0.25,a=25.
答:a的值為25.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘海輪在A點時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達B處,此時燈塔C在它的北偏西55°方向上.
(1)求海輪在航行過程中與燈塔C的最短距離(結果精確到0.1);
(2)求海輪在B處時與燈塔C的距離(結果保留整數(shù)).
(參考數(shù)據(jù):sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經過點A(﹣2,6),且與x軸相交于點B,與y軸交于點D,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.
(1)求k,b的值;
(2)請直接寫出不等式kx+b﹣3x>0的解集;
(3)M為射線CB上一點,過點M作y軸的平行線交y=3x于點N,當MN=OD時,求M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋中裝有3個綠球,5個紅球和若干白球,它們除顏色外其他都相同,將球攪勻,從中任意摸出一個球.
(1)若袋內有4個白球,從中任意摸出一個球,是綠球的概率為 ,是紅球的概率為 ,是白球的概率為 .
(2)如果任意摸出一個球是綠球的概率是,求袋中有幾個白球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù)y=|x|-2的圖象特征進行了探究,探究過程如下:
⑴自變量x的取值范圍是全體實數(shù),x與y的幾組對應值如下:
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | 1 | m | -1 | -2 | n | 0 | 1 | 2 | … |
其中,m= ,n= .
⑵根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出函數(shù)圖象;
⑶觀察函數(shù)圖象,寫出一條特征: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果把一個奇數(shù)位的自然數(shù)各數(shù)為上的數(shù)字從最高位到個位依次排列,與從個位到最高位依次排列出的一串數(shù)字完全相同,相鄰兩個數(shù)位上的數(shù)字之差的絕對值相等(不等于0),且該數(shù)正中間的數(shù)字與其余數(shù)字均不同,我們把這樣的自然數(shù)稱為“階梯數(shù)”,例如自然數(shù)12321,從最高位到個位依次排出的一串數(shù)字是:1,2,3,2,1,從個位到最高位依次排出的一串數(shù)字仍是:1,2,3,2,1,且|1﹣2|=|2﹣3|=|3﹣2|=|2﹣1|=1,因此12321是一個“階梯數(shù)”,又如262,85258,…,都是“階梯數(shù)”,若一個“階梯數(shù)”t從左數(shù)到右,奇數(shù)位上的數(shù)字之和為M,偶數(shù)位上的數(shù)字之和為N,記P(t)=2N﹣M,Q(t)=M+N.
(1)已知一個三位“階梯數(shù)”t,其中P(t)=12,且Q(t)為一個完全平方數(shù),求這個三位數(shù);
(2)已知一個五位“階梯數(shù)”t能被4整除,且Q(t)除以4余2,求該五位“階梯數(shù)”t的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線AB與y軸交于點,與x軸交于點B,,直線CD與y軸交于點D,與x軸交于點,,直線AB與直線CD交于點Q,E為直線CD上一動點,過點E作x軸的垂線,交直線AB于點M,交x軸于點N,連接AE、BE.
求直線AB、CD的解析式及點Q的坐標;
當E點運動到Q點的右側,且的面積為時,在y軸上有一動點P,直線AB上有一動點R,當的周長最小時,求點P的坐標及周長的最小值.
在問的條件下,如圖2將繞著點B逆時針旋轉得到,使點M與點G重合,點N與點H重合,再將沿著直線AB平移,記平移中的為,在平移過程中,設直線與x軸交于點F,是否存在這樣的點F,使得為等腰三角形?若存在,求出此時點F的坐標;若不存在,說明理由
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知的三個頂點坐標為,,.
(1)將繞坐標原點逆時針旋轉,畫出對應圖形,
(2)并寫出點的對應點的坐標______;點關于原點對稱的對應點坐標_______;
(3)請直接寫出:以、、為頂點的平行四邊形的第四個頂點的坐標______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司生產的新產品需要精加工后才能投放市場,為此王師傅承擔了加工300個新產品的任務.在加工了80個新產品后,王師傅接到通知,要求加快新產品加工的進程,王師傅在保證加工零件質量的前提下,平均每天加工新產品的個數(shù)比原來多15個,這樣一共用6天完成了任務.問接到通知后,王師傅平均每天加工多少個新產品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com