【題目】重慶某油脂公司生產銷售菜籽油、花生油兩種食用植物油.

1)已知花生的出油率為56%,是菜籽的1.4倍,現(xiàn)有菜籽、花生共100噸,若想得到至少52噸植物油,則其中的菜籽至多有多少噸?

2)在去年的銷售中,菜籽油、花生油的售價分別為20/升,30/升,且銷量相同,今年由于花生原材料價格上漲,花生油的售價比去年提高了a%,菜籽油的售價不變,總銷量比去年降低a%,且菜籽油、花生油的銷量均占今年總銷量的,這樣,預計今年的銷售總額比去年下降a%,求a的值.

【答案】1)菜籽至多有25;(2)25

【解析】試題分析:(1)設菜籽有x噸,則花生有(100﹣x)噸,根據(jù)至少得到52噸植物油,即可列出不等式,解之就可求得x的取值范圍,取其內的最大正整數(shù)即可;

2)設y=a%,根據(jù)銷售總額=菜籽油的銷售額+花生油的銷售額,結合今年的銷售總額比去年下降a%即可列出關于y的一元二次方程,解之即可得出結論

試題解析:解:(1)設菜籽有x噸,則花生有(100﹣x)噸,根據(jù)題意得:

56%100﹣x+56%x÷1.4≥52,解得:x≤25

答:菜籽至多有25噸.

2)設y=a%,根據(jù)題意得:[20+301+y]1y=20+30)(1y),整理得:4y2y=0,解得:y=0.25y=0(舍去),a%=0.25,a=25

答:a的值為25

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪在A點時測得燈塔C在它的北偏東42°方向上,它沿正東方向航行80海里后到達B處,此時燈塔C在它的北偏西55°方向上.

1)求海輪在航行過程中與燈塔C的最短距離(結果精確到0.1);

2)求海輪在B處時與燈塔C的距離(結果保留整數(shù)).

(參考數(shù)據(jù):sin55°≈0.819,cos55°≈0.574,tan55°≈1.428,tan42°≈0.900,tan35°≈0.700,tan48°≈1.111

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+b的圖象經過點A(﹣2,6),且與x軸相交于點B,與y軸交于點D,與正比例函數(shù)y3x的圖象相交于點C,點C的橫坐標為1

1)求k,b的值;

2)請直接寫出不等式kx+b3x0的解集;

3M為射線CB上一點,過點My軸的平行線交y3x于點N,當MNOD時,求M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋中裝有3個綠球,5個紅球和若干白球,它們除顏色外其他都相同,將球攪勻,從中任意摸出一個球.

1)若袋內有4個白球,從中任意摸出一個球,是綠球的概率為   ,是紅球的概率為   ,是白球的概率為   

2)如果任意摸出一個球是綠球的概率是,求袋中有幾個白球?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班數(shù)學興趣小組對函數(shù)y=|x|-2的圖象特征進行了探究,探究過程如下:

⑴自變量x的取值范圍是全體實數(shù),xy的幾組對應值如下:

x

-3

-2

-1

0

1

2

3

4

y

1

m

-1

-2

n

0

1

2

其中,m= ,n= .

⑵根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出函數(shù)圖象;

⑶觀察函數(shù)圖象,寫出一條特征: .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果把一個奇數(shù)位的自然數(shù)各數(shù)為上的數(shù)字從最高位到個位依次排列,與從個位到最高位依次排列出的一串數(shù)字完全相同,相鄰兩個數(shù)位上的數(shù)字之差的絕對值相等(不等于0),且該數(shù)正中間的數(shù)字與其余數(shù)字均不同,我們把這樣的自然數(shù)稱為階梯數(shù),例如自然數(shù)12321,從最高位到個位依次排出的一串數(shù)字是:1,23,21,從個位到最高位依次排出的一串數(shù)字仍是:1,2,3,2,1,且|1﹣2|=|2﹣3|=|3﹣2|=|2﹣1|=1,因此12321是一個階梯數(shù),又如262,85258,,都是階梯數(shù),若一個階梯數(shù)t從左數(shù)到右,奇數(shù)位上的數(shù)字之和為M,偶數(shù)位上的數(shù)字之和為N,記Pt=2NM,Qt=M+N

1)已知一個三位階梯數(shù)t,其中Pt=12,且Qt)為一個完全平方數(shù),求這個三位數(shù);

2)已知一個五位階梯數(shù)t能被4整除,且Qt)除以42,求該五位階梯數(shù)t的最大值與最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線ABy軸交于點,與x軸交于點B,直線CDy軸交于點D,與x軸交于點,,直線AB與直線CD交于點QE為直線CD上一動點,過點Ex軸的垂線,交直線AB于點M,交x軸于點N,連接AEBE

求直線AB、CD的解析式及點Q的坐標;

E點運動到Q點的右側,且的面積為時,在y軸上有一動點P,直線AB上有一動點R,當的周長最小時,求點P的坐標及周長的最小值.

問的條件下,如圖2繞著點B逆時針旋轉得到,使點M與點G重合,點N與點H重合,再將沿著直線AB平移,記平移中的,在平移過程中,設直線x軸交于點F,是否存在這樣的點F,使得為等腰三角形?若存在,求出此時點F的坐標;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知的三個頂點坐標為,

1)將繞坐標原點逆時針旋轉,畫出對應圖形,

2)并寫出點的對應點的坐標______;點關于原點對稱的對應點坐標_______;

3)請直接寫出:以、為頂點的平行四邊形的第四個頂點的坐標______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產的新產品需要精加工后才能投放市場,為此王師傅承擔了加工300個新產品的任務.在加工了80個新產品后,王師傅接到通知,要求加快新產品加工的進程,王師傅在保證加工零件質量的前提下,平均每天加工新產品的個數(shù)比原來多15個,這樣一共用6天完成了任務.問接到通知后,王師傅平均每天加工多少個新產品?

查看答案和解析>>

同步練習冊答案