【題目】如圖,在△ABC中,AC=BC,∠C=90,AD是△ABC的角平分線,DE⊥AB,垂足為E.求證:AB=AC+CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE⊥AB且AE=AB,BC⊥CD且BC=CD,請按圖中所標(biāo)注的數(shù)據(jù),計算圖中實線所圍成的面積S是( )
A.50B.62C.65D.68
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,點E、F分別在直線AB、CD上,∠EPF=90°,∠BEP=∠GEP,則∠1與∠2的數(shù)量關(guān)系為( )
A. ∠1=∠2B. ∠1=2∠2C. ∠1=3∠2D. ∠1=4∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點分別為A(﹣1,﹣1),B(﹣3,3),C(﹣4,1)
①畫出△ABC關(guān)于y軸對稱的△A1B1C1 , 并寫出點B的對應(yīng)點B1的坐標(biāo);
②畫出△ABC向下平移3個單位的△AB2C2 , 并寫出點C的對應(yīng)點C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點E在BC上,AB=BE,BF平分∠ABC交AD于點F,請用無刻度的直尺畫圖(保留作圖痕跡,不寫畫法).
(1)在圖1中,過點A畫出△ABF中BF邊上的高AG;
(2)在圖2中,過點C畫出C到BF的垂線段CH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖拋物線y=ax2+bx+c與x軸交于點A(﹣1,0)、B(3,0),與y軸交于點C(0,﹣3)
(1)請直接寫出拋物線的解析式.
(2)拋物線的對稱軸上是否存在一點P,使得△ACP的周長最短,若存在,請直接寫出點P的坐標(biāo).
(3)點G的坐標(biāo)是(2,﹣3),點F是x軸上一點,拋物線上是否存在點R,使得以A,G,F(xiàn),R為頂點的四邊形是平行四邊形?若存在,直接寫出點R的坐標(biāo).
(4)在B、C連線的下方拋物線上是否存在一點Q,使得△QBC的面積是△ABC的面積的一半?若存在,求出點Q的坐標(biāo).
(5)拋物線的頂點設(shè)為D,對稱軸與y軸的交點為E,M(m,0)是x軸上一動點,點N是線段DE上的一點,若∠MNC=90°,請直接寫出實數(shù)m的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,將兩個邊長為1的小正方形分別沿對角線剪開,拼成正方形ABCD.
(1)正方形ABCD的面積為 ,邊長為 ,對角線BD= ;
(2)求證:;
(3)如圖②,將正方形ABCD放在數(shù)軸上,使點B與原點O重合,邊AB落在x軸的負(fù)半軸上,則點A所表示的數(shù)為 ,若點E所表示的數(shù)為整數(shù),則點E所表示的數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.
(1)如圖(1),連接AF、CE.
①四邊形AFCE是什么特殊四邊形?說明理由;
②求AF的長;
(2)如圖(2),動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運(yùn)動過程中,已知點P的速度為每秒5cm,點Q的速度為每秒4cm,運(yùn)動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com