【題目】據(jù)圖解答

(1)如圖1,在菱形ABCD中,CE=CF,求證:AE=AF.
(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點(diǎn)A,OP與⊙O相交于點(diǎn)C,連接CB,∠OPA=40°,求∠ABC的度數(shù).

【答案】
(1)證明:∵四邊形ABCD是菱形,

∴AB=BC=CD=AD,∠B=∠D

∵CE=CF,

∴BE=DF

在△ABE與△ADF中,

∴△ABE≌△ADF.

∴AE=AF;


(2)解:∵AB是⊙O的直徑,直線PA與⊙O相切于點(diǎn)A,

∴∠PAO=90°.

又∵∠OPA=40°,

∴∠POA=50°,

∴∠ABC= ∠POA=25°


【解析】(1)根據(jù)菱形的性質(zhì),利用SAS判定△ABE≌△ADF,從而求得AE=AF;(2)利用切線的性質(zhì)和直角三角形的兩個(gè)銳角互余的性質(zhì)得到圓心角∠PAO的度數(shù),然后利用圓周角定理來求∠ABC的度數(shù).本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、SSA、HL.判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.同時(shí)考查了切線的性質(zhì),圓周角定理.圓的切線垂直于經(jīng)過切點(diǎn)的半徑.
【考點(diǎn)精析】關(guān)于本題考查的菱形的性質(zhì)和切線的性質(zhì)定理,需要了解菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實(shí)中央的強(qiáng)基惠民工程計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊(duì)先合做15那么余下的工程由甲隊(duì)單獨(dú)完成還需5

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在日常生活中,如取款、上網(wǎng)等都需要密碼.有一種用因式分解法產(chǎn)生的密碼,方便記憶.原理是:如對(duì)于多項(xiàng)式x4-y4,因式分解的結(jié)果是(x-y)(x+y)·(x2+y2),若取x=9,y=9時(shí),則各個(gè)因式的值是:(x-y)=0,(x+y)=18,x2+y2=162,于是就可以把“018162”作為一個(gè)六位數(shù)的密碼.對(duì)于多項(xiàng)式4x3-xy2,取x=10,y=10時(shí),用上述方法產(chǎn)生的密碼共有多少種?請(qǐng)你分別寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點(diǎn),DF與對(duì)角線AC交于點(diǎn)M,過M作MECD于點(diǎn)E,1=2.

(1)若CE=1,求BC的長(zhǎng);

(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC的三邊長(zhǎng)分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④abc=5:12:13,其中能判斷△ABC是直角三角形的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,OABC的邊OC在x軸的正半軸上,OC=5,反比例函數(shù)y= (x>0)的圖象經(jīng)過點(diǎn)A(1,4).

(1)求反比例函數(shù)的關(guān)系式和點(diǎn)B的坐標(biāo);
(2)如圖2,過BC的中點(diǎn)D作DP∥x軸交反比例函數(shù)圖象于點(diǎn)P,連接AP、OP.
①求△AOP的面積;
②在OABC的邊上是否存在點(diǎn)M,使得△POM是以PO為斜邊的直角三角形?若存在,請(qǐng)求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:﹣32+6cos45°﹣ +| ﹣3|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算
(1)計(jì)算:(﹣1)2016﹣4cos60°+( 0﹣( 2
(2)先化簡(jiǎn),再求值: ,其中3x+6y﹣1=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案