【題目】計算:﹣32+6cos45°﹣ +| ﹣3|
【答案】解:原式=﹣9+6× ﹣2 +3﹣
=﹣9+3 ﹣2 +3﹣
=﹣6.
【解析】本題涉及負(fù)指數(shù)冪、二次根式化簡、絕對值、特殊角的三角函數(shù)值等考點.在計算時,需要針對每個考點分別進行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)指數(shù)冪、二次根式化簡、絕對值、特殊角的三角函數(shù)值等考點的運算.
【考點精析】根據(jù)題目的已知條件,利用特殊角的三角函數(shù)值和實數(shù)的運算的相關(guān)知識可以得到問題的答案,需要掌握分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”;先算乘方、開方,再算乘除,最后算加減,如果有括號,先算括號里面的,若沒有括號,在同一級運算中,要從左到右進行運算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C,E是直線l兩側(cè)的點,以C為圓心,CE長為半徑畫弧交l于A,B兩點,又分別以A,B為圓心,大于 AB的長為半徑畫弧,兩弧交于點D,連接CA,CB,CD,下列結(jié)論不一定正確的是( )
A.CD⊥l
B.點A,B關(guān)于直線CD對稱
C.點C,D關(guān)于直線l對稱
D.CD平分∠ACB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)圖解答
(1)如圖1,在菱形ABCD中,CE=CF,求證:AE=AF.
(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點A,OP與⊙O相交于點C,連接CB,∠OPA=40°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線OB是一次函數(shù)y=2x的圖象,點A的坐標(biāo)是(0,2),點C在直線OB上且△ACO為等腰三角形,求C點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省某地區(qū)為了了解2016年初中畢業(yè)生畢業(yè)去向,對部分九年級學(xué)生進行了抽樣調(diào)查,就九年級學(xué)生畢業(yè)后的四種去向:A.讀普通高中;B.讀職業(yè)高中;C.直接進入社會就業(yè);D.其他(如出國等)進行數(shù)據(jù)統(tǒng)計,并繪制了兩幅不完整的統(tǒng)計圖(如圖1,如圖2)
(1)填空:該地區(qū)共調(diào)查了 200 名九年級學(xué)生;
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若該地區(qū)2016年初中畢業(yè)生共有3500人,請估計該地區(qū)今年初中畢業(yè)生中讀普通高中的學(xué)生人數(shù);
(4)老師想從甲,乙,丙,丁4位同學(xué)中隨機選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請用畫樹狀圖或列表的方法求選中甲同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.
(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點為D,求△ACD的面積(請在圖1中探索);
(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當(dāng)P,Q運動到t秒時,△APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(biāo)(請在圖2中探索).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,O為坐標(biāo)原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA中點,點P在BC上以每秒1個單位的速度由C向B運動,設(shè)運動時間為t秒.
(1)△ODP的面積S=________.
(2)t為何值時,四邊形PODB是平行四邊形?
(3)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,求t的值,并求出Q點的坐標(biāo);若不存在,請說明理由;
(4)若△OPD為等腰三角形,請寫出所有滿足條件的點P的坐標(biāo)(請直接寫出答案,不必寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC為矩形,點A,C分別在x軸和y軸上,連接AC,點B的坐標(biāo)為(4,3),∠CAO的平分線與y軸相交于點D,則點D的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com