【題目】如圖,△ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是( )
A. 2 B. C. D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一空曠場地上設(shè)計一落地為矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內(nèi)的條件下活動,其可以活動的區(qū)域面積為S(m2).①如圖1,若BC=4m,則S= m2.②如圖2,現(xiàn)考慮在(1)中的矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其它條件不變則在BC的變化過程中,當(dāng)S取得最小值時,邊BC的長為 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有5個黃球、13個黑球和22個紅球,它們除顏色外都相同。
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個球是黃球的概率不小于,問至少取出了多少個黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點A(0,1),交x軸于點B.直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,且在點D的上方,設(shè)P(1,n).
(1)求直線AB的解析式和點B的坐標(biāo);
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是上的一點,,點是的中點,交于點,.若的面積為18,給出下列命題:①的面積為16;②的面積和四邊形的面積相等;③點是的中點;④四邊形的面積為;其中,正確的結(jié)論有_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=12,點E為BC的中點,以CD為直徑作半圓CFD,點F為半圓的中點,連接AF,EF,圖中陰影部分的面積是( 。
A. 18+36π B. 24+18π C. 18+18π D. 12+18π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,過A點的切線AP與BC的延長線交于點P,∠APB的平分線分別交AB,AC于點D,E,其中AE,BD(AE<BD)的長是一元二次方程x2﹣5x+6=0的兩個實數(shù)根.
(1)求證:PABD=PBAE;
(2)在線段BC上是否存在一點M,使得四邊形ADME是菱形?若存在,請給予證明,并求其面積;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1:y=kx+b與x軸、y軸分別交于A,B兩點,其中點B的坐標(biāo)為(0,6),∠BAO=30°將直線l1沿著y軸正方向平移一段距離得到直線l2交y軸于點M,且l1與l2之間的距離為3,點C(x,y)是直線11上的一個動點,過點C作AB的垂線CD交y軸于點D.
(1)求點M的坐標(biāo)和直線l1的解析式;
(2)當(dāng)C運動到什么位置時,△AOD的面積為21,求出此時點C的坐標(biāo);
(3)連接AM,將△ABM繞著點M旋轉(zhuǎn)得到△A'B'M,在平面內(nèi)是否存在一點N.使四邊形AMA'N為矩形?若存在,求出點N的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長為1的正方形OA1B1C1的兩邊在坐標(biāo)軸上,以它的對角線OB1為邊作正方形OB1B2C2,再以正方形OB1B2C2的對角線OB2為邊作正方形OB2B3C3,以此類推……則正方形OB2019B2020C2020的頂點B2020的坐標(biāo)是 _____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com