拋物線的的對稱軸為            

直線X=0    Y軸

解析試題分析:由題意分析之,的頂點是(0,-3),故對稱軸是直線X=0    Y軸
考點:本題考查了二次函數(shù)的對稱軸
點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對二次函數(shù)的對稱軸等基本知識熟練把握

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知:拋物線y=x2+bx-3與x軸相交于A、B兩點,與y軸相交于點C,并且OA=OC.
(1)求這條拋物線的解析式;
(2)過點C作CE∥x軸,交拋物線于點E,設拋物線的頂點為點D,試判斷△CDE的形狀,并說明理由;
(3)設點M在拋物線的對稱軸l上,且△MCD的面積等于△CDE的面積,請寫出點M的坐標(無精英家教網需寫出解題步驟).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•宿城區(qū)一模)如圖,已知拋物線y=ax2+bx-4與x軸交于A、B兩點,與y軸交于C點,經過A、B、C三點的圓的圓心M(1,m)恰好在此拋物線的對稱軸上,⊙M的半徑為
10

(1)求m的值及拋物線的解析式;
(2)點P是線段AB上的一個動點,過點P作PN∥BC,交AC于點N,連接CP,當△PNC的面積最大時,求點P的坐標;
(3)點D(2,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點F的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,已知梯形OABC,拋物線分別過點O(0,0)、A(2,0)、B(6,3).

(1)直接寫出拋物線的對稱軸、解析式及頂點M的坐標;

(2)將圖1中梯形OABC的上下底邊所在的直線OA、CB以相同的速度同時向上平移,分別交拋物線于點O1、A1、C1、B1,得到如圖2的梯形O1A1B1C1.設梯形O1A1B1C1的面積為S,A1、 B1的坐標分別為 (x1y1)、(x2y2).用含S的代數(shù)式表示,并求出當S=36時點A1的坐標;

(3)在圖1中,設點D坐標為(1,3),動點P從點B出發(fā),以每秒1個單位長度的速度沿著線段BC運動,動點Q從點D出發(fā),以與點P相同的速度沿著線段DM運動.PQ兩點同時出發(fā),當點Q到達點M時,PQ兩點同時停止運動.設P、Q兩點的運動時間為t,是否存在某一時刻t,使得直線PQ、直線AB、軸圍成的三角形與直線PQ、直線AB、拋物線的對稱軸圍成的三角形相似?若存在,請求出t的值;若不存在,請說明理由.

                                                    

                                                    

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年浙江寧波寧海長街初級中學九年級上期中考試數(shù)學試卷(解析版) 題型:填空題

拋物線的的對稱軸為             

 

查看答案和解析>>

同步練習冊答案