如圖,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,在AB邊上取動(dòng)點(diǎn)P,連接DP,作PQ⊥DP,使得PQ交射線BC于點(diǎn)E,設(shè)AP=x,BE=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)若△APD是等腰三角形時(shí),求BE的長(zhǎng);
(3)點(diǎn)E能否與C點(diǎn)重合,若存在,求出相應(yīng)的AP的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)可通過(guò)構(gòu)建相似三角形來(lái)求解,過(guò)D作AB的垂線DH,垂足為H,那么根據(jù)AB、CD的長(zhǎng),就能表示出AH、BH、PH的長(zhǎng),然后通過(guò)證三角形DPH和PBE相似,得出關(guān)于DH、PH、PB、BE的比例關(guān)系式,由于BC=DH,因此可得出關(guān)于x、y函數(shù)關(guān)系式.
(2)可分三種情況進(jìn)行討論;
①當(dāng)AP=AD時(shí),AD可在直角三角形ADH中,根據(jù)AH的長(zhǎng)和BC的長(zhǎng)用勾股定理得出.那么此時(shí)就得出了AP的值即x的值,然后代入(1)的函數(shù)式即可得出BE的長(zhǎng).
②當(dāng)AD=PD時(shí),可根據(jù)等腰三角形三線合一的特點(diǎn)先求出AH的值,那么AH=PH即可得出x的值,然后代入(1)的函數(shù)式求出BE.
③當(dāng)AP=PD時(shí),可在直角三角形DPH中用含x的式子表示出PD2,然后根據(jù)AP2=PD2,求出x的值,然后根據(jù)(1)的函數(shù)式求出BE的長(zhǎng).
(3)當(dāng)E與C重合時(shí),BE=AH,然后將(1)中得出的AH的值,代入(1)的函數(shù)式中,可得出一個(gè)關(guān)于x的二元一次方程,那么看看這個(gè)方程是否有解即可判斷出是否存在E與C重合的情況.
解答: 解:(1)過(guò)D點(diǎn)作DH⊥AB于H,
則四邊形DHBC為矩形,
∴HB=CD=6,
∴AH=AB-CD=2.
∵AP=x,
∴PH=x-2,
∵∠DPH+∠PDH=90°,∠DPH+∠BPE=90°,
∴∠PDH=∠BPE.
∵∠DHP=∠B=90°,
∴△DPH∽△PEB.
=,
=,
整理得:y=(x-2)(8-x)=-x2+x-4.

(2)直角三角形AHD中,AH=AB-CD=2,DH=BC=4,根據(jù)勾股定理可得:AD=2 5,
要使△APD是等腰三角形,則
情況①:當(dāng)AP=AD=2,即x=2時(shí):
BE=y=-×(22+×2-4=5-9
情況②:當(dāng)AD=PD時(shí),則AH=PH,
∵AH=2,PH=x-2,
∴2=x-2,
解得x=4,符合x(chóng)的取值范圍,
那么:BE=y=-×+×5-4=2;
情況③:當(dāng)AP=PD時(shí),則AP2=PD2,
∴x2=42+(x-2)2
解得x=5,符合x(chóng)的取值范圍,
那么:BE=y=-×52+×5-4=2

(3)若存在點(diǎn)E能與C點(diǎn)重合,
則y=-x2+x-4=4,
整理得:x2-10x+32=0
∵△=(-10)2-4×32<0,
∴原方程無(wú)解,
∴不存在點(diǎn)E與C點(diǎn)重合.
點(diǎn)評(píng):本題主要考查了直角梯形的性質(zhì),相似三角形的判定和性質(zhì)以及二次函數(shù)的綜合應(yīng)用等知識(shí)點(diǎn),通過(guò)構(gòu)建相似三角形來(lái)得出二次函數(shù)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,則CD的長(zhǎng)為( 。
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知:如圖,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于點(diǎn)O,那么,圖中全等三角形共有
3
對(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,梯形ABCD中,AD∥BC,BD為對(duì)角線,中位線EF交BD于O點(diǎn),若FO-EO=3,則BC-AD等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的長(zhǎng);
(2)試在邊AB上確定點(diǎn)P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,梯形ABCD中,AD∥BC,BC=5,AD=3,對(duì)角線AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案