如圖,BC切圓O于B,AB=BC=OA,連AC交圓O于D,OC交圓O于E,則∠CED的度數(shù)為
 
考點(diǎn):切線的性質(zhì),圓內(nèi)接四邊形的性質(zhì)
專題:
分析:由∠CED在圓的外部,所以盡可能讓它成為圓內(nèi)接四邊形的外角,需在圓中構(gòu)造四邊形,利用已知條件,得出所有能得出的角度,只要求出圓內(nèi)接四邊形與∠CED有關(guān)的內(nèi)角,即可求出∠CED的度數(shù).
解答:解:延長(zhǎng)CO到圓上一點(diǎn)M,連接MA,
∵BC切圓O于B,
∴∠OBC=90°,
又∵AB=BC=OA=BO,
∴△OAB是等邊三角形,∠BAC=∠BCA,
BO=BC,∴∠BOC=∠BCO=45°
又∵∠OBA=60°,
∴∠BAC=∠BCA=15°,
∵∠AOB=60°,∠BOC=45°,
∴∠OMA=75°,
∵OM=0A,
∴∠MAO=52.5°,
∴∠MAC=97.5°,
∠CED=∠MAC=97.5°(圓內(nèi)接四邊形的外角等于它不相鄰的內(nèi)角).
點(diǎn)評(píng):主要考查了切線的性質(zhì),等腰三角形的性質(zhì),圓內(nèi)接四邊形的性質(zhì),綜合性較強(qiáng),有利于同學(xué)們綜合能力的提升.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在同一時(shí)刻的陽(yáng)光下,甲的影子比乙的影子長(zhǎng),那么在同一路燈下(  )
A、甲的影子比乙的長(zhǎng)
B、甲的影子比乙的影子短
C、甲的影子和乙的影子一樣長(zhǎng)
D、無(wú)法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)y=ax2+bx+c的x與y的部分對(duì)應(yīng)值如下表:
x -1 0 1 2 3
y
7
4
-5
4
-9
4
-5
4
7
4
則下列說(shuō)法錯(cuò)誤的是( 。
A、二次函數(shù)圖象與x軸交點(diǎn)有兩個(gè)
B、x≥2時(shí)y隨x的增大而增大
C、二次函數(shù)圖象與x軸交點(diǎn)橫坐標(biāo)一個(gè)在-1~0之間,另一個(gè)在2~3之間
D、對(duì)稱軸為直線x=1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,A1A2⊥A2A3,A2A3⊥A3A4,…,設(shè)AA1=A1A2=A2A3=1,若A1A2=a1,A3A4=a2,A5A6=a3,則a2=
 
,an=
 
(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AD是高,矩形PQMN的頂點(diǎn)P、N分別在AB、AC上,QM在邊BC上.若BC=8cm,AD=6cm,且PN=2PQ,則矩形PQMN的周長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x、y互為相反數(shù),a、b互為倒數(shù),m的絕對(duì)值為3,則4(x+y)-ab+m3的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A是一次函數(shù)y=2x的圖象與反比例函數(shù)y=
k
x
的圖象在第一象限內(nèi)的交點(diǎn),AB⊥x軸于點(diǎn)B,點(diǎn)C在x軸的負(fù)半軸上,且∠ACB=∠OAB,△OAB的面積為4,則點(diǎn)C的坐標(biāo)為(  )
A、(-8,0)
B、(-6,0)
C、(-
11
2
,0)
D、(-
9
2
,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知菱形ABCD的兩條對(duì)角線分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對(duì)角線BD上一點(diǎn).
(1)求菱形ABCD的面積.
(2)求PM+PN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某班體育委員記錄了第一小組七位同學(xué)定點(diǎn)投籃(每人投10個(gè))的情況,投進(jìn)籃框的個(gè)數(shù)為6,10,5,3,4,8,4,這組數(shù)據(jù)的極差是( 。
A、4B、5C、6D、7

查看答案和解析>>

同步練習(xí)冊(cè)答案