【題目】有兩個十分喜歡探究的同學(xué)小明和小芳,他們善于將所做的題目進(jìn)行歸類,下面是他們的探究過程。
(1)解題與歸納
①小明摘選了以下各題,請你幫他完成填空。
= ; = ; = ; = ; = ; = ;
②歸納:對于任意數(shù)a,有=
③小芳摘選了以下各題,請你幫她完成填空。
= ; = ; = ; = ; = ; = ;
④歸納:對于任意非負(fù)數(shù)a,有=
(2)應(yīng)用
根據(jù)他們歸納得出的結(jié)論,解答問題。
數(shù)a,b在數(shù)軸上的位置如圖所示,化簡: -
【答案】(1)①2,5,6,0,3,6,②(或或其他答案),③4,9,25,36,49,0,④a
(2)-a-b
【解析】試題分析:(1)根據(jù)要求填空即可;
(2)先根據(jù)數(shù)軸上點(diǎn)的位置確定:a<0,b>0,b>a,再根據(jù)(1)中的公式代入計算即可.
試題解析:(1)=2; =5; =6; =0; =|﹣3|=3; =|﹣6|=6;
故答案為:2,5,6,0,3,6;
②對于任意數(shù)a,有=|a|=,
故答案為:|a|=;
③=4; =9; =25; =36; =49; =0;
故答案為:4,9,25,36,49,0
④對于任意非負(fù)數(shù)a,有=a,
故答案為:a;
(2)由數(shù)軸得:a<0,b>0,b>a,
∴b﹣a>0
化簡: .
=|a|﹣|b|+|a﹣b|﹣(b﹣a)
=﹣a﹣b+b﹣a﹣b+a
=﹣a﹣b.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)A、C的坐標(biāo)分別為(10,0),(0,2),點(diǎn)D是線段BC上的動點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線y=﹣x+m交線段OA于點(diǎn)E.
(1)矩形OABC的周長是 ;
(2)連結(jié)OD,當(dāng)OD=DE時,求m的值;
(3)若矩形OABC關(guān)于直線DE的對稱圖形為四邊形O1A1B1C1,試探究四邊形O1A1B1C1與矩形OABC重疊部分的面積是否會隨著E點(diǎn)位置的變化而變化,若不變,求出該重疊部分的面積;若改變,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE⊥AB,EF∥AC,∠A=32°,
①求∠DEF的度數(shù);
②若∠F比∠ACF大60°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題4分+5分=9分)
如圖,直線AB、CD相交于點(diǎn)O,OM⊥AB.
(1)若∠1=∠2,求∠NOC的度數(shù);(2)若∠1=∠BOC,求∠MOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點(diǎn),P是對角線BD上一點(diǎn),則PM+PN的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,互為相反數(shù)的是( )
A. |+2|與|﹣2| B. ﹣|+2|與+(﹣2) C. ﹣(﹣2)與+(+2) D. |﹣(﹣3)|與﹣|﹣3|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(-2,-3),點(diǎn)A與點(diǎn)B關(guān)于y軸對稱,則點(diǎn)B的坐標(biāo)為___________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com