【題目】如圖,大正方形中,,小正方形中,,在小正方形繞點旋轉(zhuǎn)的過程中,當(dāng)時,線段的長為________.
【答案】或
【解析】
分兩種情況討論,通過證△AFC∽△AEB,利用對應(yīng)邊成比例和勾股定理即可算出BE的長.
解:①當(dāng)旋轉(zhuǎn)到如下圖所示時,連接AF、AC,AC交EF于點M,
由正方形和正方形可知,
,,∠BAC=∠EAF=45°,
即,
∵∠BAC=∠BAE+∠EAC=45°,∠EAF=∠CAF+∠EAC=45°,
∴∠BAE=∠CAF,
∴△AFC∽△AEB,
∴,
若,則C、F、G三點共線,
∵正方形和正方形,,,
∴,,
在直角三角形ACG中,,
∴,
將代入,得;
②當(dāng)旋轉(zhuǎn)到如下圖所示時,
若,則C、F、G三點共線,
由①可知,,∠BAC=∠EAF=45°,
∴∠EAB=∠FAC=45°,
∴△AFC∽△AEB,
∴,
在直角三角形ACG中,,
,
將代入,得.
故答案為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線(、為常數(shù))的頂點為,等腰直角三角形的頂點的坐標(biāo)為,的坐標(biāo)為,直角頂點在第四象限.
(1)如圖,若該拋物線經(jīng)過、兩點,求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點在直線上滑動,且與交于另一點.
①若點在直線下方,且為平移前(1)中的拋物線上的點,當(dāng)以、、三點為頂點的三角形是等腰直角三角形時,求出所有符合條件的點的坐標(biāo);
②取的中點,連接,,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知矩形ABCD,AB=4,AD=3,點E為邊DC上不與端點重合的一個動點,連接BE,將BCE沿BE翻折得到BEF,連接AF并延長交CD于點G,則線段CG的最大值是( )
A.1B.1.5C.4-D.4-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形紙片滿足.將此矩形紙片按下列順序折疊,則圖4中的長為___________________(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)就本校學(xué)生對新冠肺炎防控有關(guān)知識的了解情況進(jìn)行了一次隨機抽樣調(diào)查,圖①、圖②是他們根據(jù)采集數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計圖(A:了解很少,B:了解一般,C:了解較多,D:了解很多).請你根據(jù)圖中提供的信息解答以下問題:
(1)求本次抽取的學(xué)生人數(shù);
(2)先求出、兩類學(xué)生人數(shù),然后將圖②補充完整;
(3)在扇形統(tǒng)計圖中,計算出部分所對應(yīng)的扇形圓心角的度數(shù);
(4)若該學(xué)校共有1200名學(xué)生,請估計類的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在和中,,連接交于點.求證:;并直接寫出______.
(2)類比探究:如圖2,在和中,,連接交的延長線于點.請判斷的值及的度數(shù).
(3)拓展延伸:在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點.若,請直接寫出當(dāng)點與點重合時的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,AD=4,M點是BC的中點,A為圓心,AB為半徑的圓交AD于點E.點P在弧BE上運動,則PM+DP的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,∠BAC=(<45°).先將△ABC以點B為旋轉(zhuǎn) 中心,逆時針旋轉(zhuǎn)90°得到△DBE,再將△ABC以點A為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到△AFG,連接DF,DG,AE,如圖②.
(1)四邊形ABDF的形狀是 ;
(2)求證:四邊形AEDG是平行四邊形;
(3)若AB=2,=30°,則四邊形AEDG的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =,④中,正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com