【題目】折疊矩形紙片ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cm,BC=10cm,折痕AE的長(zhǎng)( )
A. cm B. cm C. 12cm D. 13cm
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旋轉(zhuǎn)變換是全等變換的一種形式,我們?cè)诮忸}實(shí)踐中經(jīng)常用旋轉(zhuǎn)變換的方法來構(gòu)造全等三角形來解決問題。
(1)方法探究:如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E在邊BC上,∠DAE=45°
試探究線段BD、CE、DE可以組成什么樣的三角形。我們可以過點(diǎn)B作BF⊥BC,使BF=EC,連接AF、DF,易得∠AFB=45°進(jìn)而得到△AFB≌△AEC,相當(dāng)于把△AEC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°到△AFB,請(qǐng)接著完成下面的推理過程:
∵△AFB≌△AEC,
∴∠BAF= ,AF=AE,
∵∠BAC=90°,∠DAE=45°,
∴∠BAD+∠CAE= ,
∴∠BAF+∠BAD=45°,
∴∠DAF=45°= ,
在△DAF與△DAE中,
AF=AE,
∠DAF=∠DAE,
AD=AD,
∴△DAF≌△DAE,
∴DF= ,
∵BD、BF、DF組成直角三角形,
∴BD、CE、DE組成直角三角形.
(2)方法運(yùn)用
① 如圖②,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠ABC+∠ADC=180°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上,∠EAF=45°試判斷線段BE、DF、EF之間的數(shù)量關(guān)系,并說明理由。
② 如圖③,在①的基礎(chǔ)上若點(diǎn)E、F分別在BC和CD的延長(zhǎng)線,其他條件不變,①中的關(guān)系在圖③中是否仍然成立?若成立請(qǐng)說明理由;若不成立請(qǐng)寫出新的關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為v厘米/秒,則當(dāng)△BPD與△CQP全等時(shí),v的值為________厘米/秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=17,AC=10,BC邊上的高AD=8,則邊BC的長(zhǎng)為( )
A. 21 B. 15 C. 9 D. 9或21
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn)50°得△A1B1C1(A、B分別對(duì)應(yīng)A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AD⊥BC于點(diǎn)D,BE⊥AC于點(diǎn)E,且DF=DC。
(1)求證:BD=AD;
(2)若AF=1,DC=3,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次測(cè)繪活動(dòng)中,某同學(xué)站在點(diǎn)A處觀測(cè)停放于B、C兩處的小船,測(cè)得船B在點(diǎn)A北偏東75°方向150米處,船C在點(diǎn)A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線C1:y=ax2+4x+4a(0<a<2)
(1)當(dāng)C1與x軸有唯一一個(gè)交點(diǎn)時(shí),求此時(shí)C1的解析式;
(2)如圖①,若A(1,yA),B(0,yB),C(﹣1,yC)三點(diǎn)均在C1上,連BC作AE∥BC交拋物線C1于E,求點(diǎn)E到y(tǒng)軸的距離;
(3)若a=1,將拋物線C1先向右平移3個(gè)單位,再向下平移2個(gè)單位得到拋物線C2 , 如圖②,拋物線C2與x軸相交于點(diǎn)M、N(M點(diǎn)在N點(diǎn)的左邊),拋物線的對(duì)稱軸交x軸于點(diǎn)F,過點(diǎn)F的直線l與拋物線C2相交于P,Q(P在第四象限)且S△FMQ=2S△FNP , 求直線l的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個(gè)條件,不正確的是( )
A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com