【題目】根據(jù)國(guó)家發(fā)改委實(shí)施“階梯電價(jià)”的有關(guān)文件要求,某縣結(jié)合地方實(shí)際,決定對(duì)居民生活用電實(shí)行“階梯電價(jià)”收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)見(jiàn)下表
一戶居民一個(gè)月用電量的范圍 | 電費(fèi)價(jià)格(單位:元/千瓦時(shí)) |
不超過(guò)150千瓦時(shí)的部分 | a |
超過(guò)150千瓦時(shí),但不超過(guò)230千瓦時(shí)的部分 | b |
超過(guò)230千瓦時(shí)的部分 | a+0.33 |
2019年10月份,該縣居民甲用電100千瓦時(shí),交費(fèi)64元;居民乙用電200千瓦時(shí),交費(fèi)134.5元.
(1)根據(jù)題意,求出上表中a和b的值;
(2)實(shí)行“階梯電價(jià)”收費(fèi)以后,該縣居民當(dāng)月用電多少千瓦時(shí)時(shí),其當(dāng)月的平均電價(jià)為0.67元?
【答案】(1)a=0.64,b=0.77;(2)該縣居民當(dāng)月用電195千瓦時(shí)時(shí),其當(dāng)月的平均電價(jià)為0.67元
【解析】
(1)根據(jù)“該縣居民甲用電100千瓦時(shí),交費(fèi)64元;居民乙用電200千瓦時(shí),交費(fèi)134.5元”,即可得出關(guān)于a,b的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)該縣居民當(dāng)月用電x千瓦時(shí)時(shí),其當(dāng)月的平均電價(jià)為0.67元,分x≤150,150<x≤230及x>230三種情況,根據(jù)總價(jià)=單價(jià)×數(shù)量,即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論.
解:(1)依題意,得:,
解得:;
(2)設(shè)該縣居民當(dāng)月用電x千瓦時(shí)時(shí),其當(dāng)月的平均電價(jià)為0.67元.
當(dāng)x≤150時(shí),0.64x=0.67x,方程不成立;
當(dāng)150<x≤230時(shí),150×0.64+0.77(x﹣150)=0.67x,
解得:x=195;
當(dāng)x>230時(shí),150×0.64+(230﹣150)×0.77+(0.64+0.33)(x﹣230)=0.67x,
解得:x=(不合題意,舍去).
答:該縣居民當(dāng)月用電195千瓦時(shí)時(shí),其當(dāng)月的平均電價(jià)為0.67元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若拋物線L2:y=mx2+nx(m≠0)與拋物線L1:y=ax2+bx(a≠0)的開(kāi)口大小相同,方向相反,且拋物線L2經(jīng)過(guò)L1的頂點(diǎn),我們稱拋物線L2為L1的“友好拋物線”.
(1)若L1的表達(dá)式為y=x2﹣2x,求L1的“友好拋物線”的表達(dá)式;
(2)已知拋物線L2:y=mx2+nx為L1:y=ax2+bx的“友好拋物線”.求證:拋物線L1也是L2的“友好拋物線”;
(3)平面上有點(diǎn)P(1,0),Q(3,0),拋物線L2:y=mx2+nx為L1:y=ax2的“友好拋物線”,且拋物線L2的頂點(diǎn)在第一象限,縱坐標(biāo)為2,當(dāng)拋物線L2與線段PQ沒(méi)有公共點(diǎn)時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:矩形ABCD中,AB=4,BC=3,點(diǎn)M、N分別在邊AB、CD上,直線MN交矩形對(duì)角線 AC于點(diǎn)E,將△AME沿直線MN翻折,點(diǎn)A落在點(diǎn)P處,且點(diǎn)P在射線CB上.
(1)如圖1,當(dāng)EP⊥BC時(shí),求CN的長(zhǎng);
(2) 如圖2,當(dāng)EP⊥AC時(shí),求AM的長(zhǎng);
(3) 請(qǐng)寫(xiě)出線段CP的長(zhǎng)的取值范圍,及當(dāng)CP的長(zhǎng)最大時(shí)MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,AB=AC,過(guò)AB上一點(diǎn)D作DE∥AC交BC于點(diǎn)E,以E為頂點(diǎn),ED為一邊,作∠DEF=∠A,另一邊EF交AC于點(diǎn)F.
(1)求證:四邊形ADEF為平行四邊形;
(2)當(dāng)點(diǎn)D為AB中點(diǎn)時(shí),判斷ADEF的形狀;
(3)延長(zhǎng)圖①中的DE到點(diǎn)G,使EG=DE,連接AE,AG,F(xiàn)G,得到圖②,若AD=AG,判斷四邊形AEGF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校進(jìn)行校園美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,如果由甲隊(duì)先做20天,剩下的工程由甲、乙合作24天完成.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天,需要支付工程款3.5萬(wàn)元,乙隊(duì)施工一天需要支付工程款2萬(wàn)元:如果規(guī)定在70天內(nèi)完成這項(xiàng)工作,是由甲、乙兩隊(duì)單獨(dú)完成省錢(qián)?還是由甲乙合作完成該工程省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B(-1,2)是一次函數(shù)與反比例函數(shù)
()圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)大于反比例函數(shù)的值?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)A(2,3)在反比例函數(shù)y=的圖象上,則下列說(shuō)法正確的是( )
A.該函數(shù)圖象分布在第二、四象限
B.k的值為6
C.該函數(shù)圖象經(jīng)過(guò)點(diǎn)(1,﹣6)
D.若點(diǎn)A(x1,y1),B(x2,y2)都在該函數(shù)圖象上,且x1<x2,則y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,2),B(4,0),C(4,-4).
(1)請(qǐng)?jiān)趫D中畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè)畫(huà)出△A2B2C2,;
(3)填空:△AA1A2的面積為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系的位置如圖所示.
請(qǐng)作出關(guān)于軸的對(duì)稱圖形,再作出關(guān)于軸的對(duì)稱圖形;
若點(diǎn)為邊上一點(diǎn),則點(diǎn)在上的對(duì)應(yīng)點(diǎn)的坐標(biāo)為_ ;
點(diǎn)為軸上一點(diǎn),且點(diǎn)到點(diǎn)的距高之和最短,請(qǐng)畫(huà)出圖形并寫(xiě)出點(diǎn)的坐標(biāo)為_ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com