【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)2(x+2)2﹣8=0.

(2)x(x﹣6)=x.

(3)2x2+4x+1=0.

(4)=x.

【答案】(1)x1=0,x2=﹣4;(2)x1=0,x2=7;(3);(4)原方程的解為x=3.

【解析】

1)-8變號(hào)后移到等號(hào)的右側(cè),方程兩邊同時(shí)除以2,然后利用直接開平方法解方程即可;

(2)移項(xiàng)后,利用因式分解法解方程即可;

(3)利用公式法解方程;

(4)兩邊同時(shí)平方,得到整式方程后再利用因式分解法進(jìn)行求解后進(jìn)行檢驗(yàn)即可.

(1)2(x+2)2=8,

(x+2)2=4,

x+2=±2,

x1=0,x2=﹣4;

(2)x(x﹣6)=x,

x(x﹣6)﹣x=0,

x(x﹣7)=0,

x1=0,x2=7;

(3)2x2+4x+1=0,

a=2,b=4,c=1,

b2﹣4ac=16﹣8=8>0,

所以x=,

(4)兩邊平方得x+6=x2,

x2﹣x﹣6=0,

(x+2)(x﹣3)=0,

x1=﹣2,x2=3,

經(jīng)檢驗(yàn),x=﹣2不是原方程的解,

∴原方程的解為x=3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x24x+2)(x24x+6+4進(jìn)行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

= y2+8y+16 (第二步)

=y+42 (第三步)

=x24x+42 (第四步)

回答下列問題:

1)該同學(xué)第二步到第三步運(yùn)用了因式分解的_______

A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)

若不徹底,請(qǐng)直接寫出因式分解的最后結(jié)果_________

3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x22x)(x22x+2+1進(jìn)行因式分解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)上過點(diǎn)分別作、的平行線,分別交、于點(diǎn)、

①如果要得到矩形,那么應(yīng)具備條件:________

②如果要得到菱形,那么應(yīng)具備條件:________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,1=2,DB=DC.

(1)求證:ABD≌△EDC;

(2)若∠A=135°,BDC=30°,求∠BCE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在等邊ABC中,點(diǎn)D.E分別在邊BCAB上,且BD=AE,ADCE交于點(diǎn)F

1)求證:AD=CE

2)求∠DFC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題12分)如圖甲,在平面直角坐標(biāo)系中,直線y=x+8分別交x軸、y軸于點(diǎn)AB,⊙O的半徑為2個(gè)單位長度.點(diǎn)P為直線y=x+8上的動(dòng)點(diǎn),過點(diǎn)P⊙O的切線PCPD,切點(diǎn)分別為C、D,且PC⊥PD

1)試說明四邊形OCPD的形狀(要有證明過程);

2)求點(diǎn)P的坐標(biāo);

3)如圖乙,若直線y=x+b⊙O的圓周分成兩段弧長之比為13,請(qǐng)直接寫出b的值

4)向右移動(dòng)⊙O(圓心O始終保持在x軸上),試求出當(dāng)⊙O與直線y=x+8有交點(diǎn)時(shí)圓心O的橫坐標(biāo)m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o直角坐標(biāo)系中按要求畫圖和解答下列問題:

以原點(diǎn)為對(duì)稱中心,畫出的中心對(duì)稱圖形

以原點(diǎn)為位似中心,在原點(diǎn)的另一側(cè)畫出的位似三角形,的位似比為;

的面積________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D在△ABC的邊AB上,點(diǎn)EAC的中點(diǎn),過點(diǎn)CCFABDE的延長線于點(diǎn)F,連接AF

(1)求證:CD=AF;

(2)若∠AED=2ECD,求證:四邊形ADCF是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地勻速駛往乙地,一列慢車從乙地勻速駛往甲地.設(shè)先發(fā)車輛行駛的時(shí)間為xh,兩車之間的距離為ykm,圖中的折線表示yx之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問題:

(1)慢車的速度為_____km/h,快車的速度為_____km/h;

(2)解釋圖中點(diǎn)C的實(shí)際意義并求出點(diǎn)C的坐標(biāo);

(3)求當(dāng)x為多少時(shí),兩車之間的距離為500km.

查看答案和解析>>

同步練習(xí)冊(cè)答案