精英家教網 > 初中數學 > 題目詳情
如圖,在等腰梯形ABCD中,AD∥BC,對角線AC⊥BD于點O,AE⊥BC,DF⊥BC,垂足分別為E,F,設AD=a,BC=b,則四邊形AEFD的周長是( )

A.3a+b
B.2(a+b)
C.2b+a
D.4a+b
【答案】分析:過D作DG∥AC,交BC的延長線于點G,根據等腰梯形的性質可求得BE的長,根據平行四邊形的性質及等腰三角形的性質可得到四邊形ACGD是平行四邊形,△BDG,△DFG分別是等腰直角三角形,再根據周長公式即可求得四邊形AEFD的周長.
解答:解:根據題意,先作如圖所示的輔助線,
由四邊形ABCD是等腰梯形,可得AC=BD,且AD=EF=a,BE=FC==
作DG∥AC,交BC的延長線于G.
∵AD∥BC,AC∥DG
∴四邊形ACGD是平行四邊形
∴AD=CG=a,DG=AC=BD
∵BD⊥AC,AC∥DG
∴BD⊥DG
在△BDG中,BD⊥DG,BD=DG
∴△BDG是等腰直角三角形
∴∠G=45°
在△DFG中,∠G=45°,∠DFG=90°
∴△DFG是等腰直角三角形
∴DF=FG=FC+CG=+a
由題意易得四邊形AEFD是矩形,故其周長為2(AD+DF)=2(a++a)=3a+b.
故選A.
點評:本題以等腰梯形為載體,綜合考查了等腰直角三角形、平行四邊形、矩形的性質和判定以及等腰梯形的性質和最基本輔助線作法,知識聯系強.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設P、Q同時出發(fā)并運動了t秒.
(1)當PQ將梯形ABCD分成兩個直角梯形時,求t的值;
(2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
求證:∠BEC=∠CFB.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是(  )

查看答案和解析>>

科目:初中數學 來源:中考必備’04全國中考試題集錦·數學 題型:044

如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側部分的面積為S.

  

(1)分別求出當點Q位于AB、BC上時,S與x之間的函數關系式,并寫出自變量x的取值范圍;

(2)當線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

(3)當(2)的條件下,設線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當一直線l經過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

查看答案和解析>>

同步練習冊答案