如圖,AB=AC,∠BAC=120°,AB的垂直平分線交BC于點(diǎn)D,那么∠DAC的度數(shù)為


  1. A.
    90°
  2. B.
    80°
  3. C.
    70°
  4. D.
    60°
A
分析:由AB=AC,∠BAC=120°,根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,利用三角形內(nèi)角和定理得到∠B=(180°-120°)=30°,然后根據(jù)線段垂直平分線的性質(zhì)得到
DB=DA,則∠BAD=∠B=30°,再根據(jù)∠DAC=∠BAC-∠BAD進(jìn)行計(jì)算.
解答:∵AB=AC,∠BAC=120°,
∴∠B=∠C,
∴∠B=(180°-120°)=30°,
∵AB的垂直平分線交BC于點(diǎn)D,
∴DB=DA,
∴∠BAD=∠B=30°,
∴∠DAC=∠BAC-∠BAD=120°-30°=90°.
故選A.
點(diǎn)評(píng):本題考查了線段垂直平分線的性質(zhì):線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等.也考查了等腰三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,AB=AC=AD.
(1)如果AD∥BC,那么∠C和∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)如果∠C=2∠D,那么你能得到什么結(jié)論?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)一模)已知:如圖,AB=AC,∠DAE=∠B.
求證:△ABE∽△DCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•來(lái)賓)如圖,AB=AC,D,E分別是AB,AC上的點(diǎn),下列條件中不能證明△ABE≌△ACD的是
( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB=AC,∠C=67°,AB的垂直平分線EF交AC于點(diǎn)D,求∠DBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB=AC=10,∠A=40°,AB的垂直平分線MN交AC于點(diǎn)D,求:
(1)∠ABD的度數(shù);
(2)若△BCD的周長(zhǎng)是m,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案