【題目】如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點,且AM平分∠BAD,DM平分∠ADC.求證:

(1)AM⊥DM;
(2)M為BC的中點.

【答案】
(1)解:∵AB∥CD,

∴∠BAD+∠ADC=180°,

∵AM平分∠BAD,DM平分∠ADC,

∴2∠MAD+2∠ADM=180°,

∴∠MAD+∠ADM=90°,

∴∠AMD=90°,

即AM⊥DM


(2)解:作NM⊥AD交AD于N,

∵∠B=90°,AB∥CD,

∴BM⊥AB,CM⊥CD,

∵AM平分∠BAD,DM平分∠ADC,

∴BM=MN,MN=CM,

∴BM=CM,

即M為BC的中點.


【解析】(1)根據(jù)平行線的性質(zhì)得到∠BAD+∠ADC=180°,根據(jù)角平分線的定義得到∠MAD+∠ADM=90°,根據(jù)垂直的定義得到答案;(2)作NM⊥AD,根據(jù)角平分線的性質(zhì)得到BM=MN,MN=CM,等量代換得到答案.
【考點精析】利用角平分線的性質(zhì)定理對題目進行判斷即可得到答案,需要熟知定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B.

(1)請你在圖中把圖補畫完整;

(2)求C′B的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)解方程:x2﹣4x﹣3=0
(2)解不等式組: 并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,CD⊥AB于D,AB=4cm,則∠BCD= , BD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點O,且OB=OC.試說明△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(-8,0),直線BC經(jīng)過點B(-8,6),C(0,6),將四邊形OABC繞點O按順時針方向旋轉(zhuǎn)α度(0<α ≤180°)得到四邊形OA′B′C′,此時直線OA′、直線B′C′分別與直線BC相交于P、Q.在四邊形OABC旋轉(zhuǎn)過程中,若BP=BQ,則點P的坐標為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BE和CF是△ABC的兩條高,∠ABC=48°,∠ACB=76°,則∠FDE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(3a22的正確結(jié)果是(
A.9a5
B.6a5
C.6a4
D.9a4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在平面直角坐標系xOy中,已知正比例函數(shù)y= 與一次函數(shù)y=﹣x+7的圖象交于點A.

(1)求點A的坐標;
(2)在y軸上確定點M,使得△AOM是等腰三角形,請直接寫出點M的坐標;
(3)如圖、設(shè)x軸上一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側(cè)),分別交y= 和y=﹣x+7的圖象于點B、C,連接OC,若BC= OA,求△ABC的面積及點B、點C的坐標;
(4)在(3)的條件下,設(shè)直線y=﹣x+7交x軸于點D,在直線BC上確定點E,使得△ADE的周長最小,請直接寫出點E的坐標.

查看答案和解析>>

同步練習冊答案