【題目】關(guān)于反比例函數(shù)y=的下列說(shuō)法正確的是( )
① 該函數(shù)的圖象在第二、四象限;
② A(x1、y1)、B(x2、y2)兩點(diǎn)在該函數(shù)圖象上,若x1<x2,則y1<y2;
③ 當(dāng)x>2時(shí),則y>-2;
④ 若反比例函數(shù)y=與一次函數(shù)y=x+b的圖象無(wú)交點(diǎn),則b的范圍是-4<b<4.
A. ① ③ B. ①④ C. ②③ D. ②④
【答案】B
【解析】根據(jù)反比例函數(shù)的圖象與性質(zhì)逐一進(jìn)行判斷即可得.
①k=-4<0,圖象在二、四象限,故①正確;
②若A(x1、y1)在二象限,B(x2、y2)在四象限,滿足了x1<x2,但y1>y2,故②錯(cuò)誤;
③當(dāng)x=2時(shí),y=-2,因?yàn)樵诿恳幌笙迌?nèi),y隨著x的增大而增大,所以當(dāng)x>2時(shí),y>-2,故③錯(cuò)誤;
④聯(lián)立,則有,整理得:x2+bx+4=0,
因?yàn)閮珊瘮?shù)圖象無(wú)交點(diǎn),則方程x2+bx+4=0,無(wú)實(shí)數(shù)根,即b2-4×4<0,
所以-4<b<4,
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩城相距600千米,一輛客車從A城開往B城,車速為每小時(shí)80千米,同時(shí)一輛出租車從B城開往A城,車速為毎小時(shí)100千米,設(shè)客車出時(shí)間為t.
(1)【探究】 若客車、出租車距B城的距離分別為y1、y2 , 寫出y1、y2關(guān)于t的函數(shù)關(guān)系式,并計(jì)算當(dāng)y1=200千米時(shí)y2的値.
(2)【發(fā)現(xiàn)】 設(shè)點(diǎn)C是A城與B城的中點(diǎn),
(Ⅰ)哪個(gè)車會(huì)先到達(dá)C?該車到達(dá)C后再經(jīng)過(guò)多少小時(shí),另一個(gè)車會(huì)到達(dá)C?
(Ⅱ)若兩車扣相距100千米時(shí),求時(shí)間t.
(3)【決策】 己知客車和出租車正好在A,B之間的服務(wù)站D處相遇,此時(shí)出租車乘客小王突然接到開會(huì)通知,需要立即返回,此時(shí)小王有兩種選擇返回B城的方案:
方案一:繼續(xù)乘坐出租車,到達(dá)A城后立刻返回B城(設(shè)出租車調(diào)頭時(shí)間忽略不計(jì));
方案二:乘坐客車返回城.
試通過(guò)計(jì)算,分析小王選擇哪種方式能更快到達(dá)B城?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角∠O的內(nèi)部有一滑動(dòng)桿AB,當(dāng)端點(diǎn)A沿直線AO向下滑動(dòng)時(shí),端點(diǎn)B會(huì)隨之自動(dòng)地沿直線OB向左滑動(dòng),如果滑動(dòng)桿從圖中AB處滑動(dòng)到A′B′處,那么滑動(dòng)桿的中點(diǎn)C所經(jīng)過(guò)的路徑是( )
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等邊三角形ABC的邊長(zhǎng)為2,E、F、G分別是邊AB、BC、CA的點(diǎn),且AE=BF=CG,設(shè)△EFG的面積為y,AE的長(zhǎng)為x,則y與x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),將一直角三角板如圖擺放,過(guò)點(diǎn)O作射線OE平分∠BOC.
(1)如圖1,如果∠AOC=40°,依題意補(bǔ)全圖形,寫出求∠DOE度數(shù)的思路(不必寫出完整的推理過(guò)程);
(2)當(dāng)直角三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊OC在直線AB的上方,若∠AOC=α,其他條件不變,請(qǐng)你直接用含α的代數(shù)式表示∠DOE的度數(shù);
(3)當(dāng)直角三角板繞點(diǎn)O繼續(xù)順時(shí)針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過(guò)程中你發(fā)現(xiàn)∠AOC與∠DOE(0°≤∠AOC≤180°,0°≤∠DOE≤180°)之間有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的發(fā)現(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=7,將矩形ABCD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到矩形A′B′CD′,點(diǎn)E、F分別是BD、B′D′的中點(diǎn),則EF的長(zhǎng)度為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為B(0,3),其頂點(diǎn)為C,對(duì)稱軸為x=1.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo);
(3)將△AOB沿x軸向右平移m個(gè)單位長(zhǎng)度(0<m<3)得到另一個(gè)三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為1cm/s.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4),解答下列問(wèn)題:
(1)設(shè)△APQ的面積為S,當(dāng)t為何值時(shí),S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當(dāng)四邊形PQP′C為菱形時(shí),求t的值;′
(3)當(dāng)t為何值時(shí),△APQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點(diǎn)M,CF與AD交于點(diǎn)N.
(1)求證:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF滿足何種關(guān)系時(shí),四邊形AMCN是菱形,證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com