作業(yè)寶已知:如圖,E,F(xiàn)分別是四邊形ABCD的邊AD,BC的中點(diǎn),且AB=CD,AD=CB,∠B=∠D.求證:AF=CE.

證明:由于E,F(xiàn)分別是AD,BC的中點(diǎn),
∴BF=BC,DE=AD,
∵AD=CB,
∴BF=DE,
在△ABF和△CDE中,
,
∴△ABF≌△CDE(SAS)
∴AF=CE.
分析:根據(jù)全等三角形的判定方法可證明△ABF≌△CDE,由全等三角形的性質(zhì)即可得到:AF=CE.
點(diǎn)評:此題主要考查了全等三角形的判定與性質(zhì),關(guān)鍵是掌握全等三角形的判定定理:SSS、ASA、SAS、AAS,HL.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,CE、CF分別是△ABC的內(nèi)外角平分線,過點(diǎn)A作CE、CF的垂線,垂足分別為E、F.
(1)求證:四邊形AECF是矩形;
(2)當(dāng)△ABC滿足什么條件時,四邊形AECF是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知:如圖,E,F(xiàn)分別是平行四邊形ABCD的邊AD,BC的中點(diǎn).
求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△BCE、△ACD分別是以BE、AD為斜邊的直角三角形,且BE=AD,△CDE是等邊三角形.求證:△ABC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,E,F(xiàn)分別是?ABCD的邊AD,BC的中點(diǎn).求證:AF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,BE、CF分別是△ABC的邊AC、AB上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG.請你判斷線段AD與AG有什么關(guān)系?并證明.

查看答案和解析>>

同步練習(xí)冊答案