【題目】拋物線y=x2+bx+c與x軸交于A(5,0)、B(-1,0)兩點(diǎn),過(guò)點(diǎn)A作直線AC⊥x軸,交直線y=2x于點(diǎn)C.
(1)求該拋物線的解析式;
(2)求點(diǎn)A關(guān)于直線y=2x的對(duì)稱點(diǎn)A′的坐標(biāo),判定點(diǎn)A′是否在拋物線上,并說(shuō)明理由;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線,交線段CA′于點(diǎn)M,是否存在這樣的點(diǎn)P,使四邊形PACM是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1).(2)點(diǎn)A/的坐標(biāo)為(﹣3,4).點(diǎn)A/在該拋物線上.(3)點(diǎn)P運(yùn)動(dòng)到時(shí),四邊形PACM是平行四邊形.
【解析】試題分析:(1)將點(diǎn)A、B的坐標(biāo)代入拋物線的解析式,得到關(guān)于b、c的二元一次方程組,從而可解得b、c的值;
(2)過(guò)點(diǎn)B′作B′E⊥x軸于E,BB′與OC交于點(diǎn)F.由平行于y軸的直線上各點(diǎn)橫坐標(biāo)相同可知點(diǎn)C的橫坐標(biāo)為2,將x=2代入直線y=﹣2x的解析式可求得點(diǎn)C的坐標(biāo)∵點(diǎn)B和B′關(guān)于直線y=﹣2x對(duì)稱,在Rt△ABC中,由勾股定理可求得OC=5,然后利用面積法可求得BF=2.由軸對(duì)稱圖形的性質(zhì)可知B′F=FB=4.由同角的余角相等可證明∠B′BE=∠BCF,從而可證明Rt△B′EB∽R(shí)t△OBC,由相似三角形的性質(zhì)可求得B′E=4,BE=8,故此可求得點(diǎn)B′的坐標(biāo)為(﹣3,﹣4),然后可判斷出點(diǎn)B′在拋物線上;
(3)先根據(jù)題意畫出圖形,然后利用待定系數(shù)法求得B′C的解析式,設(shè)點(diǎn)P的坐標(biāo)為(x,﹣+x+),則點(diǎn)D為(x,﹣),由平行四邊形的判定定理可知當(dāng)PD=BC時(shí).四邊形PBCD是平行四邊形,最后根據(jù)PD=BC列出關(guān)于x的方程即可求得點(diǎn)P的坐標(biāo)
解:(1)∵y=x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),
∴.
解得:.
∴拋物線的解析式為y=﹣+x+.
(2)如圖,過(guò)點(diǎn)B′作B′E⊥x軸于E,BB′與OC交于點(diǎn)F.
∵BC⊥x軸,
∴點(diǎn)C的橫坐標(biāo)為5.
∵點(diǎn)C在直線y=﹣2x上,
∴C(5,﹣10).
∵點(diǎn)B和B′關(guān)于直線y=﹣2x對(duì)稱,
∴B′F=BF.
在Rt△ABC中,由勾股定理可知:OC===5.
∵S△OBC=OCBF=OBBC,
∴5×BF=5×10.
∴BF=2.
∴BB′=4.
∵∠B′BE+∠B′BC=90°,∠BCF+∠B′BC=90°,
∴∠B′BE=∠BCF.
又∵∠B′EB=∠OBC=90°,
∴Rt△B′EB∽R(shí)t△OBC.
∴,即.
∴B′E=4,BE=8.
∴OE=BE﹣OB=3.
∴點(diǎn)B′的坐標(biāo)為(﹣3,﹣4).
當(dāng)x=﹣3時(shí),y=﹣×(﹣3)2+=﹣4.
所以,點(diǎn)B′在該拋物線上.
(3)存在.
理由:如圖所示:
設(shè)直線B′C的解析式為y=kx+b,則,解得:
∴直線B′C的解析式為y=.
設(shè)點(diǎn)P的坐標(biāo)為(x,﹣+x+),則點(diǎn)D為(x,﹣).
∵PD∥BC,
∴要使四邊形PBCD是平行四邊形,只需PD=BC.又點(diǎn)D在點(diǎn)P的下方,
∴﹣(﹣)=10..
解得x1=2,x2=5(不合題意,舍去).
當(dāng)x=2時(shí),=.
∴當(dāng)點(diǎn)P運(yùn)動(dòng)到(2,)時(shí),四邊形PBCD是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為進(jìn)一步發(fā)展基礎(chǔ)教育,2016年某縣投入教育經(jīng)費(fèi)6000萬(wàn)元,2018年投入教育經(jīng)費(fèi)8640萬(wàn)元,假設(shè)該縣這兩年投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率相同.
(1)求這兩年該縣投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;
(2)若該縣教育經(jīng)費(fèi)的投入還將保持相同的年平均增長(zhǎng)率,請(qǐng)你預(yù)算2019年該縣投入教育經(jīng)費(fèi)多少萬(wàn)元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,現(xiàn)有5張寫著不同數(shù)字的卡片,請(qǐng)按要求完成下列問(wèn)題:
若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______.
若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______.
若從中取出4張卡片,請(qǐng)運(yùn)用所學(xué)的計(jì)算方法,寫出兩個(gè)不同的運(yùn)算式,使四個(gè)數(shù)字的計(jì)算結(jié)果為24.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有理數(shù)a、b、c在數(shù)軸上對(duì)應(yīng)點(diǎn)如圖所示,且|a|>|b|.
(1)|a﹣b|= ,|a+b|= ,|a+c|= ,|b﹣c|= ;
(2)化簡(jiǎn)|a﹣b|﹣|a+b|+|a+c|﹣|b﹣c|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說(shuō)法錯(cuò)誤的是( )
A.圖象關(guān)于直線x=1對(duì)稱
B.函數(shù)y=ax2+bx+c(a≠0)的最小值是﹣4
C.﹣1和3是方程ax2+bx+c=0(a≠0)的兩個(gè)根
D.當(dāng)x<1時(shí),y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說(shuō)法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對(duì)稱軸是直線x=0
D. 拋物線在對(duì)稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)正五棱柱的底面邊長(zhǎng)為2cm,高為4cm。
(1)這個(gè)棱柱共有多少個(gè)面?計(jì)算它的側(cè)面積;
(2)這個(gè)棱柱共有多少個(gè)頂點(diǎn)?有多少條棱?
(3)試用含有的代數(shù)式表示棱柱的頂點(diǎn)數(shù)、面數(shù)、與棱的條數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,且|a|=|b|,則下列結(jié)論中錯(cuò)誤的是( )
A. a+c<0B. -a+b+c<0
C. |a+b|>|a+c|D. |a+b|<|a+c|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形中,將點(diǎn)翻折到對(duì)角線上的點(diǎn)處,折痕交于點(diǎn).將點(diǎn)翻折到對(duì)角線上的點(diǎn)處,折痕交于點(diǎn).
求證:四邊形為平行四邊形;
若四邊形為菱形,且,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com